Химия - союзник медицины - конспект - Химия, Рефераты из Химия
zaycev_ia
zaycev_ia20 июня 2013 г.

Химия - союзник медицины - конспект - Химия, Рефераты из Химия

PDF (188 KB)
34 страница
1Количество скачиваний
1000+Количество просмотров
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Химия - союзник медицины. Болеутоляющие (анальгезирующие) средства. Снотворные средства. Антибактериальные и химиотерапевтические средства. Витамины. Химиотерап...
20 баллов
Количество баллов, необходимое для скачивания
этого документа
Скачать документ
Предварительный просмотр3 страница / 34

Это только предварительный просмотр

3 страница на 34 страницах

Скачать документ

Это только предварительный просмотр

3 страница на 34 страницах

Скачать документ

Это только предварительный просмотр

3 страница на 34 страницах

Скачать документ

Это только предварительный просмотр

3 страница на 34 страницах

Скачать документ
?????? (Arsenicum)

Содержание.

I. Введение.……………………………………………………………………………… II. Химия - союзник медицины. ……………………………………………………

§1. Болеутоляющие (анальгезирующие) средства. …..………………… §2. Снотворные средства. ……………………………………………………… §3. Антибактериальные и химиотерапевтические средства.…….… §4. Витамины.…….………………………………………………………………… §5. Химиотерапевтические аспекты будущего. ………………………… §6. Химия регулирует рождаемость. ………………………………………. §7. Контактные линзы. …………………………………………………………. §8. Этиловый спирт.……………………………………………………………… §9. Наркотики.……………………………………………………………………...

III. Заключение. ………………………………………………………………………. IV. Список используемой литературы.…………..…………………………….

Введение. Химия должна помогать медицине в борьбе с болезнями. Однако

эти науки прошли длинный и сложный путь развития, прежде чем им удалось добиться успеха в решении общих задач. Химия делала первые неуверенные шаги, когда медики уже располагали целым арсеналом сведений и наблюдений и часто довольно успешно справлялись с болезнями. Человек тысячами нитей связан с окружающей средой - он часть природы и следует ее законам. И в те времена, когда химики еще ничего не знали об элементах, атомах и молекулах, эта истина была усвоена врачами.

В средние века алхимики неоднократно делали попытки вмешаться в медицину и часто врач, и химик совмещались в одном лице. Однако алхимические теории не могли принести пользы практической медицине, так как они основывались не на опыте, а на предвзятых и ложных утверждениях и, как правило, вели к ошибкам. Так, легендарный химик и врач, Василий Валентин, написавший книгу о сурьме («триумфальная колесница антимония»), предлагал ее для избавления от всех болезней. Этот элемент- аналог мышьяка- ничего, кроме вреда, не мог принести страждущим. Случайные удачи химиков и использование народного опыта все-таки помогали медикам, и контакты между ними и химиками никогда не прерывались. В XV в. Теофраст Парацельс опроверг учение о пневмах, но тут же заменил их не менее таинственным «археем», не имеющим материальной природы, но подчиняющим себе материю. Эти фантастические «теории» были скоро забыты, но практическая врачебная деятельность Парацельса оказалась продуктивной. Он исследовал соединения ртути и мышьяка и заложил основу ятрохимии - науки о применении определенных химических соединений для лечения болезней. Правда, рецепты Парацельса вызвали бы у современных врачей скорее испуг, чем восхищение, но все же это были шаги по правильному пути, который действительно мог привести к успеху и привел к нему через четыре сотни лет. История медицины сохранила опись «всяким зельям», привезенным в Москву в 1602г. английским аптекарем Джеймсом Френчем по поручению королевы Елизаветы. Среди «зелий» числятся: «цидоны яблоки в сахаре, слива дамасен, сыроп соку цитронова, водка коричная, можжевеловая, пиретрум, калган, алоэ, опиум» и даже «глина армянская»; имеются и вещества животного происхождения, например «олений рог». Всего 171 лекарство. Некоторые из них безусловно приносили пользу, это, в частности, «сок цитронов», т.е. лимонный сок, калган, алоэ, которые и ныне применяются в медицине.

В XIX в. прогресс теоретической химии, великие открытия М. В. Ломоносова, А. Лавуазье, Д.И. Менделеева, достижения в области биологии, стимулированные созданием микроскопа (Левенгук, XVII в.), развитие клеточной теории и бактериологии тесно сблизили

дороги химии и медицины и способствовали появлению плодотворных идей. Блестящим выражением новых идей оказалось создание метода дезинфекции. Химики нашли вещества, способные уничтожать в окружающей среде невидимых и свирепых врагов организма - микробов, вызывающих нагноение ран, общее заражение крови, различные инфекционные заболевания. При этом речь шла не о специальном подборе веществ, действующих именно на данный вид микроорганизмов, а о дезинфицирующем воздействии, которое губит все микробы. Постепенно были заложены основы гигиены- области, в которой пути химии и медицины сошлись с великой пользой для человечества.

Неважно было с гигиеной в Европе в средние века. Чешский ученый Бетина пишет, что даже сам король Франции Людовик XV мылся не чаще двух раз в год, а в Париже было принято выливать помои из окон на улицу- закон обязывал граждан лишь предупреждать прохожих возгласом: «Берегись, вода!» Тяжелые эпидемии были расплатой за невнимание к миру микробов, населявших почву, воду и атмосферу. Врачи хорошо знали, что, какой бы удачной ни была операция, всегда остается риск послеоперационных осложнений. В госпиталях и родильных домах часто приходилось наблюдать массовую гибель больных, вызванную тем, что мы сейчас называем инфекцией (чаще всего от микробов—стафилококков или стрептококков).

Одним из первых, кто понял значение гигиенических мероприятий, был венский врач И.Зиммельвейс, обязавший сестер в родильном доме, где он был главным врачом, мыть руки в растворе хлорной извести. Смертность среди рожениц сразу резко снизилась. Химия помогла медицине справиться с опасными врагами- микробами, которых, собственно, еще никто как следует не знал, а многие вообще не признавали.

Английский хирург Д.Листер с большим успехом применил растворы фенола (карболовой кислоты) для дезинфекции тканей во время операций; П. Кох пользовался растворами хлорной ртути (сулемы), и только в 1909 г. Стреттон открыл дезинфицирующие свойства растворов йода в спирте. Все эти средства, хотя и помогли хирургам спасти сотни тысяч жизней оперированных ими больных, все же не решали задачу борьбы с инфекционными заболеваниями. Во-первых, дезинфицирующие средства влияли только на окружающую человека среду. Операция и послеоперационный период были менее опасными, но больной не избавлялся от тех микробов, которые уже проникли в организм. Во-вторых, йод, сулеме, карболовая кислота и другие дезинфицирующие вещества иногда губили клетки организма, а погибшие ткани способствовали росту микробов. Поэтому, несмотря на все несомненные успехи методов дезинфекции, оставалась задача создания таких соединений, которые разрушали бы только микробные клетки. К началу XX в. органическая химия и методы химического синтеза достигли такого уровня, что химики уверенно

перестраивали молекулы органических соединений и могли синтезировать сложную молекулу по заданной формуле.

Немецкий ученый П. Эрлих - один из основоположников химиотерапии - был убежден, что, изменяя структуру молекулы, можно найти такие соединения, которые будут специфически влиять только на клетки возбудителей инфекционных болезней, легко проникая в - них и действуя достаточно быстро. П.Эрлих, занимаясь изучением клеток микробов, окрашивал их различными красителями, как это принято в микробиологии. Такие препараты лучше видны и позволяют исследовать тонкие детали строения клеток, которые без окраски незаметны. Определенные красящие вещества более прочно связываются с клеткой микроба, чем с клетками организма человека. Отсюда следовал вывод, что если бы эти красители оказались гибельными для микробов, то их можно было бы использовать для лечения вызываемой микробами болезни, не опасаясь отравления больного. Так, например, было известно, что метиленовая синька, которой хозяйки подсинивают белье, оказывает лечебное действие при малярии. Действие, правда, довольно слабое, но ведь можно химически изменить молекулу этого вещества - не станет ли оно от этого более эффективным? Позже, уже после первых работ П. Эрлиха, удалось получить хороший противомалярийный препарат на основе метиленовой синьки.

П.Эрлих проявил исключительное упорство в трудной работе по исследованию ряда мышьяковистых соединений, применяемых для лечения сифилиса. Было синтезировано и изучено более шестисот соединений, прежде чем удалось получить препарат под номером 606 (сальварсан), обладающий высокой лечебной активностью. Это было в 1909 г., а в 1912 г. в лаборатории П.Эрлиха синтезировали вещество, имевшее номер 914 (неосальварсан), оказавшееся еще более действенным и менее токсичным «Волшебными пулями» называли молекулы сальварсанов - они, попадая в ткани организма, поражали только микробов. Это было громадным достижением и открывало важнейшие перспективы перед новой наукой- химиотерапией.

Число побежденных болезней долгое время оставалось очень небольшим, и острые инфекции продолжали угрожать человеку. Однако врачи опытным путем нашли еще один путь борьбы с ними - создание иммунитета (невосприимчивости к болезни посредством введения в организм специальных сывороток, полученных из тканей животных, перенесших заболевание). Так удавалось бороться с оспой, дифтерией, бешенством, так и сейчас справляются с полиомиелитом, холерой, столбняком, укусами змей и т. п. Но ученые долгое время не могли объяснить, как именно и почему возникает иммунитет. Только в наши дни удалось немного приподнять завесу над химическими тайнами иммунитета - только приподнять, не более! Это одна из труднейших и многообещающих задач химии ближайшего будущего.

Тему «Химия- союзник медицины» я выбрала, потому что своё будущее хочу связать с профессией врача. Про химию и медицину можно писать бесконечно, но объём работы ограничен, поэтому я осветила только то, что мне было особенно интересно. Я почти уверена, что благодаря этой работе мне будет легче осваивать профессию врача.

Болеутоляющие (анальгезирующие) средства С раннего детства нам знакома зубная боль и такие лекарства,

как аспирин, анальгин, пирамидон (амидопирин). Эти соединения относятся к группе ненаркотических анальгетиков: они не

обладают седативным и снотворным действием, не вызывают эйфории (как наркотики), к ним не развивается привыкание. По химической структуре их можно разделить на производные салициловой кислоты (аспирин, салицилат натрия и др.) и пиразолона (амидопирин, антипирин, анальгин, бутадион):

Схема-1

Все эти вещества характеризуются тремя типами действия: анальгезирующим (обезболивающим), противовоспалительным и жаропонижающим. Механизм обезболивания объясняется их блокирующим действием на «пути проведения» болевых импульсов на уровне окончаний чувствительных нервов. Считают также, что салицилаты тормозят синтез веществ (простагландинов), участвующих в генерации болевых импульсов. Механизм противовоспалительного действия' этих препаратов связывают с их антагонизмом с так называемыми веществами воспаления. В основе жаропонижающего свойства этих соединений лежат процессы ингибирования (замедления) действия соединений (простагландины группы Е), которые оказывают пирогенные воздействия на центр теплорегуляции гипоталамуса. Понижение температуры тела является результатом теплоотдачи вследствие расширения кровеносных сосудов кожи и потоотделения.

Аспирин (ацетилсалициловая кислота)- один из наиболее сильных ингибиторов синтеза простагландинов. Он реже, чем другие салицилаты, оказывает побочные эффекты на организм человека, однако длительное (особенно без контроля врача) его использование может привести к серьезным заболеваниям желудочно-кишечного тракта (язвы и кровотечения желудка и т. д.). Для уменьшения повреждающего действия лекарства на слизистую оболочку желудка его следует принимать после еды, запивая большим количеством молока. Большие дозы аспирина и других салицилатов, принимаемые в течение продолжительного времени, могут вызвать аллергические реакции, ускорить процессы распада белков и жиров, вызвать ослабление слуха (звон в ушах).

Поэтому не следует увлекаться жаропонижающим свойством аспирина. Необходимо помнить, что лихорадка- это защитная реакция организма на большие температуры, и ее подавление (особенно при невысоких температурах) вредно для организма. Все это следует иметь в виду и при приеме таблеток, содержащих ацетилсалициловую кислоту (аскофен, цитрамон и др.).

Анальгин и амидопирин (пирамидон) широко используются при различных болевых ощущениях (головная боль, радикулиты, миозиты, невралгии, гриппе, лихорадках, ревматизме). У этих препаратов более выражен обезболивающий эффект; их противовоспалительное действие невелико. Длительное применение этих лекарств может вызвать угнетение процессов кроветворения.

Снотворные средства Снотворные средства угнетающе влияют на передачу возбуждения

в головном мозге. По механизму влияния на центральную нервную систему их относят к наркотическим веществам. Небольшие дозы снотворных средств действуют успокаивающе, средние—вызывают сон, большие - наркотическое действие. Бывают препараты длительного действия (барбитал, фенобарбитал), средней продолжительности (нитразепам, барбамил) и короткого действия (ноксирон, гексабарбитал).

Механизм сна под влиянием снотворных средств отличается от естественного, характеризующегося чередованием периодов «медленного» и «быстрого» (до 25% общей продолжительности) сна. Большинство снотворных укорачивает длительность быстрого сна.

Значительное количество снотворных относится к производным барбитуровой кислоты. Сама кислота снотворного действия не оказывает. Даже небольшие дозы барбитуратов замедляют обычные скорости двигательных и психических реакций человека на внешние раздражения.

Схема-2

Об этом должны помнить водители, тем более что некоторые барбитураты (фенобарбитал и барбитал) обладают длительным последствием (до 3—5 дней). Для барбитуратов характерен эффект привыкания, который развивается уже через две недели непрерывного приема. Другая особенность барбитуратов состоит в том, что они активируют действие ряда ферментов (в микросомах печени), дезактивируют лекарственные соединения. Поэтому действие лекарств при их совместном приеме с барбитурьтами может быть ослаблено. Барбитураты немного снижают температуру тела.

Антибактериальные и химиотерапевтические средства Все мы за свою жизнь не раз и не два переболели такими

инфекционными заболеваниями, как грипп или ангина. Предупредить эти и другие инфекционные болезни можно с помощью антисептиков и дезинфицирующих средств, уничтожив микробы на подступах к организму. Организму в борьбе с проникающими в него болезнетворными микроорганизмами помогают химиотерапевтическпе средства, обладающие антибактериальным, противовирусным, противогрибковым и другим действием.

К антибактериальным химиотерапевтическим средствам в первую очередь относятся сульфаниламидные препараты и антибиотики. Сульфаниламиды — первые антибактериальные средства, использованные в борьбе с такими болезнями, как ангина, пневмония, дифтерия, различные желудочно-кишечные заболевания (дизентерия и др.). Они эффективны в борьбе и с пневмококками, менингококками, гонококками. В настоящее время сульфациламиды подразделяют на препараты, хорошо всасывающиеся в желудочно-кишечном тракте (сульфадимезин, сульфазин, норсульфазол, этазол - непродолжительного действия; сульфадиметоксин, сульфапиридазин - продолжительного действия), и препараты, плохо всасывающиеся (фталазол):

Схема-3

Механизм действия всех сульфаниламидов основан на структурной аналогии их строения и строения фолиевой кислоты, которую синтезируют многие бактерии.

Витамины.

Витамины… Они нужны как пища и воздух, но действует в очень малых количествах, без них организм не может обойтись. Недостаток их есть причина ряда тяжелых заболеваний и снижение сопротивляемости, т.е. ослабление иммунных сил организма к действию микробов. В 1880 г. врач Н. Н. .Лунин доказал существование группы веществ, не относящихся к обычным частям пищи, но жизненно важным для человека. Его исследования были развиты К.Функом в 1911 г., предложившим их название- витамины. Еще через 11 лет Н. Н. Бессонов открыл аскорбиновую кислоту- витамин С, излечивающий цингу и повышающий сопротивляемость организма к болезням. Ее состав оказался сравнительно простым:

Схема-4

Изучение витаминов помогло биохимикам понять механизм действия лекарственных веществ и немало способствовало успехам химиотерапии. Сейчас известно, что аскорбиновая кислота облегчает процесс переноса атомов водорода от пищевых веществ к кислороду, т.е. улучшает дыхание клеток.

Другой витамин, названный витамином А, играет большую роль в процессе восприятия света сетчаткой глаза и необходим для сохранения клеточных оболочек. Он защищает организм от простудных заболеваний, пневмонии, болезней кожи. Его формула довольно сложна:

Схема-5

Обращает на себя внимание большой углеводородный “хвост” этой молекулы. На конце такой цепочки находится всего одна группа ОН. Так как группа ОН повышает растворимость соединений в воде, а углеводородная цепь понижает ее, витамин А плохо растворим в воде. Но он хорошо растворяется в жирах.

Витамин В1, был открыт при изучении причин тяжелой болезни бери-бери, сопровождающейся прогрессирующими параличами, расстройством сердечной деятельности и нарушениями работы нервной системы. Все эти явления вызваны недостатком в организме витамина В1, который входит в состав нескольких

ферментов. Последние ускоряют биохимические реакции и таким образом регулируют сложный, многоступенчатый процесс окисления пищевых веществ. В состав витамина В1 входят азот и сера:

Схема-6

Другие стадии окисления требуют присутствия других витаминов, часто объединяемых в общую группу витаминов В. К ним же причисляют и витамины, необходимые для отдельных этапов синтеза сложных соединений, процессов переноса отдельных групп атомов от одной молекулы к другой, образования гемоглобина и т.п. Было доказано, что витамин В12, содержащий в молекуле ион кобальта, необходим для кроветворения и является прекрасным средством для излечивания злокачественной анемии. Он проявляет лечебное действие в ничтожно малых количествах.

Витамины группы D необходимы для нормального развития костей, витамин Р (рутин) усиливает действие витамина С и повышает прочность и эластичность стенок кровеносных сосудов, витамин Е улучшает состояние нервно-мышечной системы и подавляет образование опасных для клеток соединений, содержащих свободные радикалы (т.е. имеющих не спаренные электроны и вследствие этого чрезмерно повышенную химическую активность). Тесная связь между ферментами и витаминами показывает, что, применяя витамины для лечения болезней, врач, в сущности, восстанавливает то химическое равновесие, которое соответствует нормальной работе организма.

Но вернемся к борьбе с микробами. Открытие и применение витаминов, развитие методов иммунизирования с помощью специфических сывороток отодвинули на второй план работы в том направлении, которое было намечено П.Эрлихом. Это понятно, так как П.Эрлих добивался успеха, идя чисто опытным путем, не имея ясных представлений о механизме поражения микробов именно его «пулями». Биохимия в это время еще не была в состоянии объяснить гибель микробов «на молекулярном уровне». И пришлось довольно долго ждать решения этой задачи хотя бы для некоторых лекарственных веществ. Лишь в 1932 г. ученик П. Эрлиха химик Г. Домагк, изучая соединения, содержащие два связанных атома азота —N=N— (диазосоединения), обнаружил, что одно из них (его позднее назвали красным стрептоцидом) успешно борется со стрептококковыми инфекциями. Опыты шли на мышах. Но однажды сын Г.Домагка, случайно уколов руку, заболел тяжелым стрептококковым заражением крови. Г.Домагк рискнул ввести

ребенку красный стрептоцид и спас своего сына от грозившей ему неизбежной смерти.После этого клинические испытания стали проводить быстрее и стрептоцид начал свое победное шествие по больницам и клиникам. Красная форма лекарства состояла из двух компонентов, неактивен был только один из них - белый стрептоцид. Он оказался менее сложным соединением, и именно его ввели врачи в медицинскую практику для борьбы с инфекциями. Было доказано, что причина, по которой стрептоцид подавляет рост микробов, заключается в том, что его молекула по своему строению очень похожа на парааминобензойную кислоту, необходимую для жизнедеятельности микробов; усваивая вместо нее стрептоцид (сульфаниламид, на языке химиков), микроб отравляется и гибнет. Формулы этих двух веществ следующие:

Схема-7

Разница в молекулах состоит только в том, что вместо группы —СООН в сульфаниламиде находится группа —SO2NH2; этого достаточно, чтобы отравить клетку стрептококка.

Теперь пути дальнейших исследований сделались более ясными: очевидно, следует варьировать состав и структуру замещающих групп, вводить заместители в аминогруппу и испытывать полученные соединения на их антимикробное действие. Так, если в группах —NH2 (сульфаниламида) заместить по одному атому водорода на группы:

Схема-8

(в группе —SO2NH2), то получится соединение, известное под названием фталазол - прекрасное лечебное средство в борьбе с кишечными инфекциями. Подбор заместителей позволяет находить соединения, специфически «настроенные» на определенный вид микробов. Это нелегкая работа: из более чем 6000 испытанных соединений лишь 20 оказались пригодными для медицинских целей. Но в целом изучение этого класса было весьма плодотворным. Удалось создать препараты, способные подавлять развитие туберкулезных бактерий; в 1946 и 1951 гг. группа, возглавляемая Г. Домагком, получила парааминосалициловую кислоту (ПАСК) и

изониазид, применение которых в последующие годы резко снизило смертность от туберкулеза:

Схема-9

В 1877 г. английский ученый У.Роберте пришел к выводу о том, что между плесневыми грибами и бактериями существует антагонизм. Микроорганизмы создают вокруг себя «зону безопасности», выделяя в окружающую среду особые вещества (их назвали антибиотиками), назначение которых—уничтожать другие микроорганизмы. Но среди этих «других» вполне могли оказаться и стафилококки, и стрептококки, и пневмококки и прочие серьезные враги человека. В 20-х годах нашего века А.Флеминг - английский микробиолог, изучая стафилококки, колонии которых росли в чашках Петри на студне из агара, заметил, что в одной из чашек микробы почти не развиваются. А.Флеминг решил, что в эту чашку из атмосферы случайно попали споры плесневого гриба, относившегося к роду пенициллиум. Вещество, полученное из жидкости, в которой рос гриб, названное пенициллином, оказалось исключительно активным по отношению к целому ряду опасных микроорганизмов. Была установлена и формула пенициллина, получены его соли и различные производные, например натриевая соль бензилпенициллина:

Схема-10

Пенициллин действует на стрептококки, пневмококки, менингококки, спирохеты и несколько слабее на стафилококки. Воспаление легких, эндокардит, раневые инфекции, гнойный плеврит, перитонит, цистит, остеомиелит, ангины, дифтерия, рожистое воспаление, менингит, скарлатина, сибирская язва - вот неполный список тяжелейших болезней, которые одолевает пенициллин. Итак, в дополнение к сульфаниламидам появились антибиотики. Исследования различных сред, в которых росли микробы, главным образом почв, взятых в различных районах земного шара, проводились широким фронтом. Вещества, выделяемые

микроорганизмами, очищали, концентрировали и испытывали их способность подавлять рост болезнетворных микробов.

В историю освоения производства антибиотиков большой вклад внесли и советские ученые Г. Н. Гаузе, 3. В. Ермольева, М. М. Шемякин и др. В настоящее время врачи располагают большим набором веществ этого класса, эффективных при лечении заболеваний. Очень большую роль в лечении туберкулеза сыграл выделенный С.Я.Ваксманом из гриба актиномицета стрептомицин. Левомицетин и тетрациклин (1945—1948 гг.) оказались ценными средствами при лечении сыпного тифа, дизентерии, бруцеллеза, коклюша, пневмонии и других заболеваний. Как и всегда, основной каркас молекулы лекарственного вещества допускает различные вариации, позволяющие улучшить его свойства или «настроить» его на определенный вид микробов.

В настоящее время известны уже сотни антибиотиков и установлен в общих чертах механизм их действия. Так, установлено, что пенициллин препятствует образованию клеточной стенки у бактерий, тетрациклины нарушают работу тех частей клетки, в которых происходит синтез белков (рибосомы), синтезы белка блокируются также и стрептомицином. Практическое применение антибиотиков требует осторожности. Многие из них токсичны, некоторые вызывают аллергические реакции. Что же касается привыкания к ним микробов, то приходится постоянно бороться с «химическим сопротивлением» микробов. Тем не менее знание всех стадий обмена веществ у микроорганизмов, доступное современной биохимии, дает основания думать, что человечество, несомненно, выиграет бой с примитивными микроорганизмами и будущие поколения не будут знать инфекционных болезней.

Но ими не исчерпывается все разнообразие недугов человека. Существуют еще многочисленные заболевания, связанные с нарушением регуляции физиологических процессов. Примером может служить диабет, при котором расстраивается система регулирования содержания сахара в крови и человек страдает от чрезмерного повышения концентрации сахара. Лечить такие болезни очень трудно. Здесь необходим союз медицины, физиологии, химии и биохимии. Намечаются успехи и на этом фронте. В частности, сульфамидные препараты оказались пригодными для снижения уровня сахара. Другая болезнь— гипертония также поддается лечению специальными препаратами, понижающими давление крови и способствующими расширению сосудов. Будем же уверенно смотреть в будущее, полагаясь на объединенные силы всех ветвей науки о природе и не забывая, что тайны жизни и развития организма скрыты в его молекулах.

Химиотерапевтические аспекты будущего. Без малейшего сомнения можно утверждать, что медицинская

химия в борьбе с инфекционными заболеваниями достигла значительных успехов. Но тот, кто думает, что мы почти полностью одолели огромное множество возбудителей болезней, глубоко заблуждается и особенно сильно потому, что именно химиотерапия вирусных заболеваний находится еще на стадии ученичества. Например, миксовирус гриппа А, вызывающий все достойные упоминания гриппозные заболевания в мире, постоянно образует новые болезнетворные подтипы, и каждые 9-10 лет происходят эпидемические вспышки инфекции. Поэтому химио - и

иммунотерапевты в последующие десятилетия должны будут серьезно поработать над этой проблемой.

Малое предложение в последнее время веществ, подавляющих рост вирусов, не имеет никаких существенных дополнений. Применение новых терапевтических средств (иоддезоксиуредина, адамантамина, метилизатин--тиосемикарбазона) для лечения вызванных патогенными вирусами заболеваний, таких, как пузырьковая сыпь (например, поясничная рожа).

К болезням, имеющим тенденцию распространяться выше среднего уровня, относятся ревматизм и ревматический полиартрит. Эти заболевания по своей сущности далеко неодинаковы. Ревматическая лихорадка как одна из акутных форм воспалительного ревматизма вызывается определенным видом стрептококков, поэтому с ней можно надежно бороться, например, пенициллином. Кроме того, можно делать защитные прививки, что касается хронического ревматизма суставов, то возбудитель его до сих пор неизвестен. Для лечения применяют симптоматические средства-противовоспалительные и болеутоляющие (например, преднистон).

Несмотря на интенсивную пропаганду, проводимую в промышленно развитых странах, тенденция к приему излюбленной высококалорийной пищи до сих пор имеет лишь слабый уклон вниз, а малоподвижный образ жизни остается поистине бичом наших дней. Поэтому специалисты должны внести что-то новое в борьбу с ожирением.

Во многих прогрессивных в экономическом отношении странах очень широко распространены сердечно-сосудистые заболевания, причиняющие много страданий людям. Будьте осторожны: около вас бродит призрак инфаркта! Причины этого явления коренятся во все возрастающем ограничение подвижности, в злоупотреблениях возбуждающими средствами, в особенности алкоголем и курением, в нерациональном питании, в непродуктивной лихорадочной работе и нервных повседневных перегрузках организма.

Уже из приведенного перечисления факторов риска следует, что биохимикам не так скоро удастся создать волшебную пилюлю от заболеваний сердца. Сразу же напрашивается мысль, а не устранить ли вначале корни зла? Для этого не потребуется ни много времени, ни больших капиталовложений. Однако легче сказать, чем сделать! Поэтому в ближайшие десятилетия и химикам, и медикам есть, чем заняться. Органической причиной многих сердечно-сосудистых заболеваний является склероз (обызвествление) кровеносных сосудов вследствие нарушения холестеринового обмена. При этом холестерин откладывается в стенках артерий. Если бы удалось в последующие годы найти и изготовить вещества, которыми можно было бы регулировать биосинтез холестерина, то этим был бы сделан первый шаг к каузальной (причинной) терапии склероза кровеносных артерий. В последние 20 лет нашего столетия химики надеются дать нам

распоряжение лекарства, которыми можно замедлить, остановить и даже повернуть вспять процесс атеросклероза.

Предупреждение закупорки вен сгустками крови (тромбами) повлечет за собой снижение смертности от инфаркта миокарда. Из многих веществ, которые могут рассасывать тромбы, представляет интерес фермент стрептокиназа, получаемый из фильтратов обычных стрептококковых штаммов. Его химическая структура еще досконально не выяснена. Установлено, что он особенно пригоден для терапевтического лечения свежих тромбов, однако может разрушать и застарелые сгустки крови максимум за 4 дня

В заключение следует упомянуть о том, что химия помогает) не только терапевтам, но и хирургам. Им она дает все больше новых вспомогательных средств, например уменьшающие трудоемкость операций: клеи для заделывания ран, различные искусственные органы из пластмасс.

Применение пластмасс в хирургии:  Артерии  Внутреннее ухо  Глазное яблоко, головки суставов, грудь  Зубы  Кожа, кости, костные пластинки, кровь  Легкие, межпозвоночные диски, мочевой пузырь, мочеточники  Носовой хрящ, оболочки нервов  Пальцы, печень, почки  Сердечные клапаны, сердце, трахея  и т.д.

Химия регулирует рождаемость. Биохимические исследования в области размножения стали уже

малозаметной повседневностью. Однако при всем этом мы стоим в самом начале многообещающего пути, конечным итогом которого может быть очень деликатное регулирование биологического процесса размножения с помощью химических средств, подобранных для каждого индивидуально.

Биология размножения людей, управляется сложной гормональной системой. Схематически её можно представить так: производимые промежуточным мозгом рилизинг-гормоны вызывают образования гонадотропинов в железах гипофиза, а те уже действуют на половые железы, выделяющие в свою очередь половые гормоны. Гонадотропины - это гормоны- белки, а половые гормоны представляют собой стероиды. Когда концентрация гормона достигает обычного значения, срабатывает механизм обратной связи и начинается торможение всей действующей цепи через дополнительную доставку собственного гормона. Изложенная схема представляет собой основу для практического вмешательства в

процесс размножения. Если в соответствующее звено цепи ввести нужный гормон или эквивалентное ему по биологическому действию соединение, то можно будет регулировать весь процесс по собственному жела нию.

Надо сказать, что пока практически можно оказывать влияние «только» на женщин. Как известно, примерно четырехнедельный цикл деятельности яичника заключается в том, что в нем развивается фолликул-пузырек величиной с горошину, в котором содержится яйцеклетка. Из приведённой выше схемы следует, что и прогестерон (гормон желтого тела) и эстрадиол (женский половой гормон) тормозят образование в гипофизе гормонов ФСГ (гормон, стимулирующий функцию фолликул) и ГСРСТ (гормон, стимулирующий разрастание соединительной ткани), необходимых для развития яйцеклетки. Если в крови искусственно повысить концентрацию эстрогенов (женских половых гормонов) или гестагенов (гормонов желтого тела), то можно полностью прервать менструальный цикл. Без ФСГ не может созреть фолликул, а без ГСРСТ не произойдет овуляции, т.е. самопроизвольного выхода яйцеклетки из фолликула, когда он уже созреет. Из этого факта следует, что для предотвращения беременности необходим препарат, тормозящий овуляцию. Такой препарат разработан и представляет собой смесь двух указанных типов гормонов (эстрогенов и гестагенов) или, гораздо чаще, их синтетических производных в виде пилюль. Применение лишь одного из них приводит к нежелательным результатам. Если взять только эстроген, то возникает опасность усиленного образования вторичных женских (половых) признаков, что приемлемо лишь в определенных пределах. Но если применять один только гестаген, то в организме женщины начнут образовываться мужские половые гормоны (поскольку блокируется продуцирование эстрогенов), а вместе с ними могут возникнуть и отрицательные изменения в ее внешнем облике.

Первые препараты, тормозящие овуляцию, были приготовлены в 1960 г. в США на основе этинилнортестостерона и метилового эфира этинилэстрадиола. В предшествующем этому десятилетии все авторитетные фармацевтические фирмы мира разрабатывали различные препараты подобного типа. В наше время найдены и новые действующие принципы и, главное, созданы противозачаточные средства, не оказывающие побочного действия.

Новинкой последних лет является разработка препаратов пролонгированного действия. Их вводят путем инъекций. Однократная доза надежно предохраняет от беременности в течение месяца. Преимуществом здесь является то, что отпадает необходимость ежедневного приема и что надежность действия 100%-ная. Действующим агентом служит ацетат медроксипрогестерона-гестаген, не оказывающий побочного действия. В настоящее время гормональными противозачаточными или стимулирующими рождаемость средствами пользуются во всем мире свыше 30 млн. женщин. В ГДР число женщин, желающих иметь детей и применяющих для этого соответствующие пилюли,

составляет свыше 500000. Практически их принимает каждая седьмая женщина в детородном возрасте (до 45 лет), используя тем самым возможность, которую предоставляет ей химия для регулирования рождаемости. Совершенно очевидно, что потребность в этом регулировании весьма актуальна для современного человека. В высокоразвитых странах пилюли принимают не потому, что женщины вообще не хотят иметь детей, а просто потому, что они хотят сами определить наиболее удобное время для их рождения. Вследствие того, что препараты обеспечивают исключительно высокую биологическую надежность, их положительное влияние на работоспособность личности просто трудно переоценить.

Путем введения тестостерона можно действенно затормозить образование фолликулостимулирующего гормона и тем самым прервать развитие и созревание спермы. Таким образом, возникает возможность разработки противозачаточных гормональных пилюль не только для женщин, но и для мужчин. Правда, повышенное количество тестостерона может привести к усиленному развитию вторичных половых признаков, так что потенциальные кандидаты для подобного лечения должны иметь в виду, что им гораздо чаще придется бриться. Торможения образования ФСГ можно достичь и с помощью эстрогенов, но это будет обусловливать падение количества ГСРСТ и понижение выработки организмом тестостерона, что затем приведет к «феминизации» мужчин. Обойти возникающие трудности можно комбинированием эстрогенов и андрогенов. Поскольку до сих пор еще нет достаточно дешевых препаратов, оказывающих андрогенное действие, разработка антиспермальных пилюль достанется уже нашим потомкам.

Проблема регулирования рождаемости имеет два аспекта: помимо предохранения от нежелательной беременности немаловажное значение приобретает и ее стимуляция. Этот аспект также актуален. Например, в ГДР от 10 до 15% всех супружеский пар остаются бездетными из-за того, что один из супругов бесплоден. В 50% случаев мы имеем дело с бесплодием женщин, в 40%-со стерильностью мужчин, а в 10% виновны оба партнера. Бесплодие женщин примерно в 40% случаев вызывается нехваткой гонадотропинов, вследствие чего и происходит блокада овуляции. В зависимости от того, в каком участке организма произошло нарушение выработки гормонов-в гипофизе (образование гонадотропинов) или промежуточном мозге, положение можно исправить введением соответствующих гормонов белковой структуры или эквивалентных им биологически активных соединений. Примерно с середины 1972 г. в женской клинике Берлинского университета успешно введен в практику лютеинизирующий рилизинг-гормон, состоящий из 10 аминокислот. Такой метод лечения может приобрести в будущем большое значение, если удастся синтезировать рилизинг-гормон или найти и получить подходящий заменитель.

Хотелось бы обратить внимание на то обстоятельство, что природное или искусственное управление сексуальной биологией млекопитающих может производиться по тем же самым принципам и, как уже указывалось в предыдущей главе, может быть использовано в животноводстве, организованном на промышленной основе.

Биохимики ведут также борьбу за то, чтобы появляющееся на свет потомство не получало травм при рождении, т.е. выполняют функции акушеров-незаменимых помощников при родах.

Контактные линзы. Многим кажется, что контактные линзы- дитя нашего столетия.

Между тем их история начинается с Леонардо да Винчи. Позже идею линз высказывал Декарт. Томас Юнг экспериментировал с трубкой, заполненной водой и приставляемой к глазу, английский астроном Джон Гершель произвел теоретические расчеты.

Но реально, в материале, линза появилась в 1887 году, когда известный висбаденский стеклодув Ф. Мюллер изготовил вогнутые стеклянные диски по заказу одного из своих клиентов. Линзы были большими, прозрачными

в середине и матовыми по краям, надевали их под веки. Больной носил линзы в течение пятнадцати лет.

Вскоре однофамилец стеклодува, студент-медик, сумел скорректировать подобным образом близорукость ни много, ни мало в 24 диоптрии. Правда, дольше получаса глаз не выдерживал.

Тогда же известный немецкий философ Адольф Фик применил новинку для коррекции астигматизма. Он и ввел термин - контактные линзы.

В десятые годы нашего века фирма «К. Цейс» начала выпускать небольшие партии линз. Отличались они, как всегда у Цейса, великолепными оптическими свойствами, но были тяжелы, неэластичны, непроницаемы для кислорода. Ну, и легко бились, конечно.

И вот в конце тридцатых годов появились первые линзы из пластмассы - полиметилметакрилата (сейчас их называют жесткими). Столь же прозрачные, как и стеклянные, но легкие, прочные, сравнительно простые в изготовлении, они быстро

вытеснили своих предшественников. Правда, основные недостатки остались - малая кислородопроницаемость и не эластичность. Линзы раздражали глаза, хотя и меньше стеклянных.

На рубеже пятидесятых - шестидесятых годов в контактной коррекции произошел еще один скачок - появились мягкие линзы. Идея носилась в воздухе давно, американцы, например, экспериментировали с акриламидом. Но главный успех пришелся на долю академика Отто Вихтерле. Он и его сотрудники разработали гидрогель из сополимера гликольметакрилата и дигликольдиметакрилата. Материал содержал около 40% воды, был эластичен, химически инертен, биологически и механически устойчив. Чешские ученые запатентовали и высокопроизводительную технологию линз.

С тех пор контактная коррекция бурно развивается. Появилось множество новых материалов: и мягких, и жестких, и полужестких, объединяющих достоинства тех и других. В развитых странах линзы носят около сорока миллионов человек, и эта цифра быстро растет.

Словосочетание, вынесенное в подзаголовок, недаром разбито на две части. Каждая из них предъявляет свои требования к материалу линзы.

Раз есть контакт, значит, полимер не должен вызывать аллергию, быть химически активным, а тем более - токсичным, канцерогенным. Короче - опасным для организма.

С другой стороны, и организм не должен вредить линзе, годами плавающей в слезной жидкости. А там - масса всякой всячины: неорганические вещества, ферменты, липиды. Жесткие линзы, действительно, устойчивы к ним. Мягкие держатся год - другой, потом покрываются непрозрачными протеиновыми бляшками.

Материал должен смачиваться: к полностью гидрофобной линзе глаз привыкнуть не сможет. В мягких линзах из гидрогелей это требование выполняется само собой, в жестких - чаще с помощью всяких ухищрений, о которых речь впереди.

Далее, линзы не должны вносить в глаз инфекцию, а значит, время от времени их надо дезинфицировать. Жесткие линзы просто моют детским мылом. Мягкие или кипятят, или стерилизуют химически. Материал обязан выдерживать эти манипуляции.

Очень важна кислородопроницаемость материала. Именно от нее зависит зрительный комфорт и продолжительность непрерывного ношения линз. И вот почему.

Роговица дышит. Поступающий через ее поверхность кислород окисляет глюкозу, основной источник энергии для обменных процессов в глазу. Если кислорода не хватает, глюкоза расщепляется не до конца и весь механизм разглаживается. Меняется рН слезной жидкости, баланс ионов натрия и калия, растворенных кислорода и углекислого газа. Меняются толщина и форма роговицы, вплоть до отека. Начинается резь в глазах, они краснеют. Зрение затуманивается, вокруг источников света появляется радужный ореол. Линзы надо немедленно снять!

Кстати, курильщики, активные и пассивные: дым от папирос сильно ускоряет эти процессы. Если вы носите линзы, подумайте о глазах, раз уж не думаете о легких.

Так вот, материал должен пропускать достаточное количество кислорода, тогда и носить можно по долгу. Лучшие современные образцы - до нескольких месяцев подряд, не снимая.

Вторая часть подзаголовка: «линзы». Что добавит она? Прежде всего, прозрачность. Вообще-то у полимеров она хуже,

чем у стекла, но линзы берут малой толщиной. И пропускают в итоге столько же света, сколько и очки:92 - 95 %.

Далее, линза должна сохранять свою форму. На это способен не всякий аморфный полимер, а лишь стеклообразный или высокоэластичный. Из первого делают жесткие, из второго - мягкие линзы.

Линзы под старость затуманиваются, желтеют, покрываются микротрещинами и неровностями.

Самый почтенный из всех материалов - полиметилметакрилат, он же плексиглас, он же оргстекло - служит контактной коррекцией уже более пятидесяти лет.

Лучше пропускает кислород материалы нового поколения: ацетобутират целлюлозы, поли - 4 - метилпентен - 1, сополимеры метилметакрилата с акриловой кислотой и т. п.

Но самая достойная «партия» для жестких линз - кремний и фторорганические соединения. По кислородопроницаемости у них почти нет конкурентов среди синтетических материалов. Да вот беда - полная гидрофобность, исправить это можно двумя путями. Первый - привить к поверхности гидрофильные мономеры, например, акриловую кислоту или N - винилпирролидон. Но поверхностный слой постепенно истирается, открывая гидрофобные проталины, и линза приходит в негодность. Более надежен второй способ: сополимеризация с гидрофильными компонентами - теми же акрилатами, виниловыми соединениями - во всем объеме. Именно так за рубежом синтезируют материалы, обладающие отличными механическими свойствами, прозрачностью, хорошей смачиваемостью. Они чуть эластичнее своих предшественников, что для глаз не мало важно.

В нашей стране такие полимеры разработаны во Всероссийском центре контактной коррекции.

Есть два вида мягких линз: низкогидрофильные - около 40% воды, и высокогидрофильные - 45-85%. Первые можно носить 12-14 часов подряд, вторые - от несколько суток до нескольких недель.

Кроме обычных линз существуют: цветные, бифокальные - для так называемого старческого зрения, солнцезащитные, косметические - позволяющие изменить цвет глаз и для больных с дефектами роговицы, линзы для плавания - вместо маски или подводных очков.

В последние годы число обладателей линз выросло и продолжает расти.

Этиловый спирт. Этиловый спирт относится к веществам наркотического типа и

оказывает угнетающее действие на центральную нервную систему человека. В организме спирт окисляется до кислых продуктов (CO2 и H2O) через стадии образования ацетальдегида и уксусной кислоты. При этом высвобождается значительное количество энергии-29,8 кДж/ч. За 1 ч в печени окисляется 10 мл спирта. Введение спирта в организм нарушает его теплоизоляцию вследствие расширения кожных кровеносных сосудов. Субъективное ощущение тепла, связанное с этим явлением, на самом деле не сопровождается повышением температуры тела. Наоборот, организм теряет теплоту, и прием спирта на холоде связан с риском замерзания. Усиливая активность слюнных и желудочных желез, спирт приводит лишь к усиленному выделению соляной кислоты и угнетающе (особенно при концентрации 15—20%) действует на пищеварительные ферменты. Прием спиртных напитков приводит к отравлению организма. При концентрации спирта в крови 1—2 г/л наступает опьянение, при 3—4 г/л развивается общая интоксикация организма, при 5—8 г/л наступает смерть.

При злоупотреблении спиртными напитками развивается хронический гастрит, цирроз печени, жировая дистрофия сердца и печени, страдает интеллект, память, развиваются психические заболевания (психозы, белая горячка). Для лечения алкоголизма используют выработку отрицательных условные рефлексов, например рвотное средство - апоморфин. Механизм действия другого препарата - тетурама - основан на том, что под его влиянием задерживается процесс окисления этанола на стадии образования ацетальдегида. Накопление последнего в организме вызывает неприятные ощущения (тошнота, рвота, головная боль, чувство страха). Больной должен понимать, что даже небольшие дозы этанола в крови могут привести на фоне действия тетурама к летальному исходу.

Наркотики. Вещества, способные вызвать эйфорию, весьма различны по

химическому строению, и тем не менее порождаемые или психические.

Эффекты довольно схожи. С морфином дело ясное: его молекула может напрямую взаимодействовать с рецепторами опиатных пептидов - естественных для организма стимуляторов центра удовольствия. Другие же наркотические препараты по строению ничуть не напоминают морфин. Поэтому возникают серьезные сомнения в том, что любой из них достигает цели, связываясь с опиатными рецепторами. Сомнения эти вполне справедливы, но не будем забегать вперед. Понять, почему самые различные наркотики вызывают субъективно сходное действие на организм, не так уж сложно, если сравнить их химическое строение со строением естественных посредников межклеточных контактов- медиаторов.

Полезнейшее растение индийская конопля издавна шло на изготовление пеньки и столь же издавна служило сырьем для получения гашиша и марихуаны (отечественные наркоманы предпочитают название «план»).

Действующее начало гашиша и марихуаны - один из изомеров тетрогидроканнабинола (ТГК). Попадая в организм, это соединение концентрируется в области лимбической системы, которую еще называют мозгом внутренних органов. Именно здесь, в лимбической системе, располагаются наиболее действенные центры удовольствия. Если же рассматривать лимбическую систему более широко, то в соответствии с теорией американского нейрофизиолога Дж. Папеца она отвечает за поддержание постоянства внутренней среды организма, размножение, развитие эмоций. Лимбическая система тесно связана с другим нервным образованием ретикулярной формацией, которая регулирует общий тонус мозга.

Угнетающее действие ТГК распространяется и на секрецию другого медиатора - гамма-аминомаслянной кислоты, выполняющей в центральной нервной системе тормозную функцию. Снятие же тормозного контроля над нервными центрами ведет к тому, что в высших отделах мозга процессы возбуждения начинают преобладать над процессами торможения. К тому же при наркотическом отравлении усиливается приток в кору полушарий импульсов от чувствительных окончаний внутренних органов. В обычном состоянии большая часть этих импульсов задерживается подкорковыми структурами мозга и не воспринимается сознанием.

комментарии (0)

Здесь пока нет комментариев

Ваш комментарий может быть первым

Это только предварительный просмотр

3 страница на 34 страницах

Скачать документ