Биологическая роль железа - конспект - Химия, Рефераты из Химия
zaycev_ia
zaycev_ia20 июня 2013 г.

Биологическая роль железа - конспект - Химия, Рефераты из Химия

PDF (225 KB)
34 страница
736Количество просмотров
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Биологическая роль железа. Железосодержащие соединения в организме человека. Кинетика обмена железа. Этиология дефицита железа. Роль питания. Диагностическое и леч...
20баллов
Количество баллов, необходимое для скачивания
этого документа
Скачать документ
Предварительный просмотр3 страница / 34
Это только предварительный просмотр
3 страница на 34 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 34 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 34 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 34 страницах
Скачать документ
????????????? ???? ??????

СОДЕРЖАНИЕ:

1.Биологическая роль железа

2.Железосодержащие о р г а н и ч е с к и е соединения в организме человека

3.Кинетика обмена железа

4.Этиология дефицита железа

5.Роль питания

6.Диагностическое и лечебное применение железа

7.Библиография

БИОЛОГИЧЕСКАЯ РОЛЬ ЖЕЛЕЗА

Для нормального роста и выполнения биологических функций человеку и животным кроме витаминов необходим целый ряд неорганических элементов. Эти элементы можно разделить на 2 класса макроэлементы и м и к р о э л е м е н т ы .

Макроэлементы, к которым относятся кальций, магний, натрий, калий, фосфор, сера и хлор, требуются организму в относительно больших количествах (порядка нескольких граммов в сутки). Часто они выполняют более чем одну функцию.

Более непосредственное отношение к действию ферментов имеют незаменимые микроэлементы, суточная потребность в которых не превышает нескольких миллиграммов, т.е. сопоставима с потребностью в витаминах. Известно, что в пище животных обязательно должно содержаться около 15 м и к р о э л е м е н т о в .

Большинство незаменимых микроэлементов служит в качестве кофакторов или простетических групп ферментов. При э т о м они выполняют какую-нибудь одну функцию из трех (по меньшей мере) возможных функций. Во-первых, незаменимый микроэлемент сам по себе может обладать каталитической активностью по отношению к той иди иной химической реакции, скорость которой в значительной степени возрастает в присутствии ферментного белка. Это особенно характерно для ионов железа и меди. Во-вторых, ион металла может образовывать комплекс одновременно и с субстратом и с активным центром фермента, в результате оба они сближаются друг с другом и переходят в активную форму. Наконец, в-третьих, ион металла может играть роль мощного акцептора электронов на определенной стадии каталитического ц и к л а .

Железо относится к тем микроэлементам, биологические функции которых изучены наиболее полно.

Значение железа для организма человека, как и в целом для живой природы, трудно переоценить. Подтверждением этому может быть не только большая распространенность его в природе, но и важная роль в сложных метаболических процессах, происходящих в живом организме. Биологическая ценность железа

определяется многогранностью его функций, незаменимостью другими металлами в сложных биохимических процессах, активным участием в клеточном дыхании, обеспечивающем нормальное функционирование тканей и организма ч е л о в е к а .

Железо принадлежит к восьмой группе элементов периодической системы Д. И. Менделеева (атомный номер 26, атомный вес 55,847 , плотность 7,86 г/см). Ценным его свойством является способность легко окисляться и восстанавливаться, образовывать сложные соединения со значительно отличающимися биохимическими свойствами, непосредственно участвовать в реакциях электронного транспорта.

ЖЕЛЕЗОСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ В ОРГАНИЗМЕ Ч Е Л О В Е К А

Железо, находящееся в организме человека, можно разбить на 2 большие группы: клеточное и внеклеточное. Соединения железа в клетке, отличающиеся различным строением, обладают характерной только для них функциональной активностью

и биологической ролью для организма. В свою очередь их можно подразделить на 4 группы:

1. гемопротеины, основным структурным элементом которых является гем (гемоглобин, миоглобин, цитохромы, каталаза и п е р о к с и д а з а ) ;

2. железосодержащие ферменты негеминовой группы (сукцинат-де- гидрогеназа, ацетил - коэнзим А - дегидрогеназа, НАДН ,- цитохром С-редуктаза и др.);

3. ферритин и гемосидерин внутренних о р г а н о в ;

4. железо, рыхло связанное с белками и другими органическими в е щ е с т в а м и .

Ко второй группе внеклеточных соединений железа относятся железо-связывающие белки трансферрин и лактоферрин, содержащиеся во внеклеточных ж и д к о с т я х .

К Л Е Т О Ч Н О Е ЖЕЛЕЗО

Г е м о г л о б и н , содержащийся в эритроцитах, выполняет важную для организма газотранспортную функцию - переносит экзогенный кислород и эндогенный углекислый газ. Эритроцит по отношению к гемоглобину играет роль буферной системы, способной

регулировать общую величину газотранспортной функции.

Дыхательный пигмент крови - сложный белок, состоящий из белковой молекулы - глобина, соединенной полипептидными цепочками с 4 комплексами гема. Глобин состоит из 2 пар ( ) полипептидных цепочек, каждая из которых содержит 141-146 аминокислот. Гем, составляющий 4% веса молекулы гемоглобина, содержит железо в центре порфиринового кольца. У здорового человека гемоглобин гетерогенен. Нормальный эритроцит содержит приблизительно 30 пг. гемоглобина, в котором находится 0,34% железа.

Миоглобин - дыхательный белок сердечной и скелетной мускулатуры. Он состоит из единственной полипептидной цепочки, содержащей 153 аминокислоты и соединенный с гемпростетической группой. Основной функцией миоглобина является транспортировка кислорода через клетку и регуляция его содержания в мышце для осуществления сложных б и о х и м и ч е с к и х процессов, лежащих в основе клеточного дыхания. Он содержит 0,34% железа. Миоглобин депонирует кислород во время сокращения мышц, а при их поражении он может попадать в кровь и выделяться с мочой.

Железосодержащие ферменты и негеминовое

железо клетки находится главным образом в митохондриях. Наиболее изученными и важными для организма ферментами являются цитохромы, каталаза и п е р о к с и д а з а .

Цитохромы делятся на 4 группы в зависимости от строения геминовой группы:

 А - цитохромы с гем - группой, соединяющей формилпорфин;

 В - цитохромы с протогем - группой;  С - цигохромы с замещенной мезогем

- группой;  Д - цитохромы с гем - группой,

соединяющей дегидропорфин. В организме человека содержатся следующие цитохромы: а1, аз, в, в5, с, с1, Р450. Они представляют собой липидные комплексы гемопротеинов и прочно связаны с мембраной митохондрии. Однако, цитохромы в5 и Р450 находятся в эндоплазматическом ретикулюме, а микросомы содержат НАДН- цитохром С - редуктазу. Существует мнение, что митохондриальное дыхание необходимо для процессов дифференцировки тканей, а внемитохондриальное играет важную роль в процессах роста и дыхания клетки. Основной биологической ролью большинства цитохромов является участие в переносе электронов, лежащих в основе процессов терминального окисления в тканях.

Цитохромоксидаза является конечным ферментом

митохондриального транспорта электронов - электронотранспортной цепочки, ответственным за образование АТФ при окислительном фосфолировании в митохондриях. Показана тесная зависимость между содержанием этого фермента в тканях и утилизацией ими кислорода.

Каталаза, как и цитохромоксидаза, состоит из единственной полипептидной цепочки, соединенной с гем - группой. Она является одним из важнейших ферментов, предохраняющих эритроциты от окислительного гемолиза. Каталаза выполняет двойную функцию в зависимости от концентрации перекиси водорода в клетке. При высокой концентрации перекиси водорода фермент катализирует реакцию ее разложения, а при низкой - и в присутствии донора водорода (метанол, этанол и др.) становится преобладающей пероксидазная активность каталазы.

Пероксидаза содержится преимущественно в лейкоцитах и слизистой тонкого кишечника у человека. Она также обладает защитной ролью, предохраняя клетки от их разрушения перекисными соединениями. Миелопероксидаза - железосодержащий

геминовый фермент, находящийся в азурофильных гранулах нейтрофильных лейкоцитов и освобождается в фагоцитирующие вакуоли

в течение лизиса гранул.

Активированное этим ферментом разрушение белка клеточной стенки бактерий является смертельным для микроорганизма, а активированное им йодинирование частиц относится к бактерицидной функции лейкоцитов. .

К железосодержащим относятся и флавопротеиновые ферменты, в которых железо не включено в геминовую группу и необходимо только для реакций переноса.

Наиболее изученной является сукцинатдегидрогеназа, которая наиболее активна в цикле трикарбоновых кислот. Митохондриальные мембраны свободно проницаемы для субстрата фермента.

Н е г е м и н о в о е железо, локализующееся главным образом в митохондриях клетки, играет существенную роль в дыхании клетки, участвуя в окислительном фосфолировании и транспорте электронов при терминальном окислении, в цикле трикарбоновых к и с л о т .

Ферритин и гемосидерин - запасные соединения железа в клетке, находящиеся главным образом в ретикулоэндотелиальной системе печени, селезенки и костного мозга. Приблизительно одна треть резервного железа организма человека, преимущественно в виде

ферритина, падает на долю печени. Запасы железа могут быть при н е о б х о д и м о с т и мобилизованы для нужд организма и предохраняют его от токсичного действия свободно циркулирующего железа.

Известно, что гепатоциты и купферовские клетки печени участвуют в создании резервного железа, причем в нормальной печени большая часть пегом и нового железа обнаружена в гепатоцитах в виде ферритина. При парентеральном введении железа как гепатоциты, так и кунферовские клетки печени аккумулируют большое количество дополнительного ферритина, хотя последние имеют тенденцию запасать относительно больше из лишнего негеминового железа в виде г е м о с и д е р и н а .

Сферическая белковая оболочка молекулы ферритина состоит из 24 субъединиц, имеющих молекулярный вес 18500 - 19000. Общий молекулярный вес апоферритина 445000. Э л е к т р о н н о - м и к р о с к о п и ч е с к и е исследования показали, что ферритин имеет полую оболочку с внутренним диаметром 70 - 80 А. Оболочка имеет 6 каналов, расширяющихся кнутри (их диаметр 9-12 А). Ядро ферритина состоит из мицелл ж е л е з о - ф о с ф а т н о г о комплекса, имеющих кристаллическую структуру. Захват и освобождение железа осуществляется

через белковые каналы путем свободного пассажа, а его отложение и мобилизация происходят на поверхности микрокристаллов. Стимуляция синтеза ферритина железом является хорошо установленным фактом.

Как известно, печень является основным компонентом ретикулоэндотелиальной системы. В конце жизнедеятельности эритроциты фагоцитируются макрофагами этой системы, а освобождающееся железо или оседает в печени в виде ферритина (гемосидерина), или возвращается в плазму крови и захватывается в паренхиматозных клетках печени и мышц, а также в макрофагах ретикулоэндотелиальной системы печени, селезенки и костного мозга. .

Г е м о с и д е р и н является вторым запасным соединением железа в клетке и содержит значительно больше железа, чем ферритин. В отличие от ферритина он нерастворим в воде. Существует достаточно аргументированное предположение, что преобразование ферритина в гемосидерин происходит путем постепенного перенасыщения ферритиновой молекулы железом с последующим ее разрушением и образованием зрелого г е м о с и д е р и н а .

В н и м а н и е исследователей в последнее время привлекает циркулирующий в крови

ферритин. Вероятно, он происходит из клеток ретикулоэндотелиальной системы. И м е ю т с я предположения, что сывороточный ферритин является отражением активной секреции ферритина из печеночных клеток, возможно из связанных полисом. Таким образом, его присутствие в сыворотке в небольшом количестве не является результатом разрушения клеток печени. Не только его происхождение, но и биологическая роль в организме человека до настоящего времени изучены недостаточно. Не вызывает сомнений точно установленный факт концентрация сывороточного ферритина отражает состояние запасного фонда железа в организме человека. Отметим, что хорошая зависимость отмечена между уровнем сывороточного ферритина и мобилизуемыми запасами железа в организме человека, изученных с помощью количественных кровопусканий, а также между ферритином и концентрацией негеминового железа в тканях печени, полученных с помощью биопсии у людей. Средняя концентрация его в сыворотке крови у мужчин выше, чем у женщин, с колебаниями от 12 до 300 мкг/л.

В Н Е К Л Е Т О Ч Н О Е Ж Е Л Е З О

Во внеклеточных жидкостях железо находится в

связанном состоянии - в виде железо - белковых комплексов. Концентрация его в плазме широко варьирует у здорового человека, составляет 10,8 - 28,8 мкмоль/л. с достаточно большими суточными колебаниями, достигающими 7,2 мкмоль/л. Общее содержание железа во всем объеме циркулирующей плазмы у взрослого человека составляет 3 - 4 мг. Уровень железа в плазме крови зависит от ряда факторов: взаимоотношения процессов разрушения и образования эритроцитов, состояния запасного фонда железа в желудочно- кишечном тракте. Однако наиболее важной причиной, определяющей уровень плазменного железа, является взаимодействие процессов синтеза и распада эритроцитов. Железо-связывающий белок трансферрин, открытый шведскими учеными, содержится в небольшом количестве в плазме крови. Общая железо-связывающая способность плазмы, характеризуящаясяпрактически концентрацией трансферрина, колеблется от 44,7 до 71,6 мкмоль/л, а свободная железо-связывающая способность - резервная емкость трансферрина - составляет 28.8 - 50.4 мкмоль/л у здорового человека. .

В плазме здорового человека трансферрин может находиться в 4 молекулярных формах:

1) апотрансферрина; 2) моножелезистого трансферрина А -

железо занимает только А - пространство;

3) моножелезистого трансферрина В - ж е л е з о занимает только В-пространство;

4) дижелезистого транферрина - заняты А и В пространства.

Молекулярный вес трансферрина 76000 - 80000, он состоит из единственной полипептидной цепочки с расположенными на ней двумя значительно схожими, если не идентичными, металлсвязывающими пространствами. Эти пространства (А и В) наиболее прочно связывают железо по сравнению с ионами других металлов. Около 6% железо-связывающего белка составляют углеводные остатки, находящиеся в 2 ответвляющихся цепочках и заканчивающихся сиаловой кислотой. Углеводы, вероятно, не участвуют в механизме захвата железа. Синтезируется трансферрин преимущественно в паренхиматозных клетках печени. Функции трансферрина в организме представляют значительный интерес. Он не только переносит железо в различные ткани и органы, но и «узнает» синтезирующие гемоглобин ретикулоциты и, возможно другие нуждающиеся в железе клетки. Трансферрин отдает железо им только в том случае, если клетки имеют специфические рецепторы, связывающие железо. Таким образом, этот железо-связывающий белок функционирует как транспортное средство для железа, обмен которого в организме человека зависит как от общего

поступления железа в плазму крови, так и от его количества, захваченного различными тканями соответственно количеству в них специфических рецепторов для железа. Кроме того трансферрин обладает защитной функцией - предохраняет ткани организма от токсического действия железа.

А н а л и з и р у я биологическую роль трансферрина в организме, следует упомянуть о результатах экспериментальных исследований, свидетельствующих о способности этого белка регулировать транспорт железа из лабильных его запасов в эпителии клеток желудочно-кишечного тракта в плазму крови. Из плазмы железо захватывается преимущественно костным мозгом для синтеза гемоглобина и эритроцитов, в меньшей степени - клетками ретикулоэндотелиальной системы и откладывается в виде запасного железа, некоторое количество его поступает в неэритропоэтические ткани и используется для образования миоглобина и ферментов тканевого дыхания (цитохромы, каталаза и т.д.). Все эти процессы являются сложными и до конца не изученными.

Однако некоторые этапы наиболее важного процесса передачи железа трансферрином клеткам костного мозга можно представить следующим образом:

1) адсорбция трансферрина рецепторными участками на

поверхности ретикулоцитов;

2) образование прочного соединения между трансферрином и клеткой, возможно проникновение белка в клетку;

3) перенос железа от железо-связывающего белка к с и н т е з и р у ю щ е м у гемоглобин - аппарату клетки;

4) освобождение трансферрина в кровь.

Известно, что количество связывающих трансферрин пространств максимально в ранних эритроидных предшественниках и уменьшается по мере созревания этих к л е т о к .

Железо-связывающий белок лактоферрин обнаружен во многих биологических жидкостях: молоке, слезах, желчи, синовиальной жидкости, панкреатическом соке и секрете тонкого кишечника. Кроме того, он находится в специфических вторичных гранулах нейтрофильных лейкоцитов, образуясь в клетках миелоидного ряда со стадии промиелоцита. Подобно трансферрину, лактоферрин способен связывать 2 атома железа специфическими пространствами. Он состоит из одной полипептидной цепочки, молекулярный вес приблизительно равен 80000. В физиологических условиях этот железо-связывающий белок насыщен железом до 20% в ничтожных количествах он содержится в плазме крови, освобождаясь в нее из нейтрофильных

лейкоцитов. Несмотря на схожесть лактоферрина и трансферрина, эти железо-связывающие белки отличаются друг от друга по антигенным свойствам, составу аминокислот, белков и углеводов.

В настоящее время известны следующие функции этого белка: бактериостатическая, участие в иммунных процессах и абсорбции железа в желудочно-кишечном тракте. Свободный от железа лактоферрин - аполактоферрин обладает бактериостатическими свойствами, которые теряются при насыщении его железом. Аполактоферрин тормозит in vitro рост бактерий и грибов, и возможно, играет роль во внутриклеточной гибели микроорганизмов. При низкой концентрации лактоферрина в нейтрофильных лейкоцитах может уменьшаться их бактерицидная а к т и в н о с т ь .

Ж е л е з о с е р н ы е ферменты - это еще один важный класс железосодержащих ферментов, участвующих в переносе электронов в клетках животных, растений и бактерий. Железосерные ферменты не содержат гемогрупп, они характеризуются тем, что в их молекулах присутствует равное число атомов железа и серы, которые находятся в особой лабильной форме, расщепляющейся под действием кислот. К железо - серным ферментам относится, например, ферредоксин хлоропластов, осуществляющий перенос

электронов от возбужденного светом хлорофилла на разнообразные акцепторы электронов.

К И Н Е Т И К А ОБМЕНА ЖЕЛЕЗА

М е х а н и з м о м , регулирующим обмен железа в организме человека, является всасывание железа в желудочно-кишечном тракте. Выделение его из организма кишечником, с кожей, потом и мочой, являющееся пассивным процессом, л и м и т и р о в а н о .

В последние 30 лет большое количество исследований в нашей стране и за рубежом посвящено изучению различных аспектов всасывания железа. Однако механизм абсорбции и специфическая роль слизистой оболочки кишечника в регуляции запасов железа и его метаболизма неизвестны.

ЭТАПЫ ОБМЕНА ЖЕЛЕЗА В ОРГАНИЗМЕ

При среднем поступлении с пищей 10-20 мг железа в сутки у здорового человека не более 1-2 мг абсорбируется в желудочно- кишечном тракте. Наиболее интенсивно этот процесс происходит в двенадцатиперстной кишке и начальных отделах тощей кишки. Желудок играет лишь незначительную роль в усвоении: в нем абсорбируется не

более 1-2% от общего количества поступающего в желудочно-кишечный тракт. Соотношение в пище продуктов животного и растительного происхождения, веществ, усиливающих и тормозящих абсорбцию, функциональное и морфологическое состояние эпителия желудочно- кишечного тракта все это оказывает влияние на величину усвоения ж е л е з а .

Кратко остановимся на процессе всасывания железа, состоящем из ряда последовательных этапов:

1) начальный захват железа щеточной каймой клеток с л и з и с т о й оболочки кишечника;

2) внутриклеточный транспорт его образование лабильных запасов железа в клетке;

3) освобождение железа из слизистой оболочки кишечника в кровь.

В экспериментальных исследованиях показано, что клетки эпителия слизистой оболочки кишечника чрезвычайно быстро абсорбируют железо из его полости, причем митохондрии активно участвуют в ранних механизмах транспорта железа. Значительная часть его (80%) находилась в митохондриях клеток, а остальная часть - в щеточной кайме в течение 5-20 минут после введения железа в желудочно-кишечный тракт. Исследования с использованием ультраструктурной авторадиографии показали, что первый этап обеспечивает достаточную концентрацию железа на

поверхности слизистой оболочки клеток д л я последующей его абсорбции. При этом железо концентрируется на щеточной кайме, закисное железо переходит в окисное на мембране м и к р о в о р с и н о к .

Второй этап поступление железа в богатую рибосомами цитоплазму и латеральное межклеточное пространство, и, наконец, третий этап перенос железа в кровеносные сосуды собственной оболочки, где оно захватывается белком крови трансферрином.

Существует точка зрения, что транспортировка железа из цитоплазмы эпителиальных клеток в кровь может осуществляться ферритином. .

Интенсивность захвата железа из клеток слизистой оболочки кишечника в кровь зависит от соотношения содержания в плазме свободного, моножелезистого или дижелезистого (насыщенного) трансферрина. Свободные молекулы последнего обладают максимальной способностью связывать железо. Комплекс трансферрин железо поступает главным образом в костный мозг, небольшая часть его в запасной фонд, преимущественно в печень, и еще меньшее количество связанного транферрином железа ассимилируется тканями для образования миоглобина, некоторых ферментов тканевого дыхания, нестойких комплексов железа с аминокислотами и белками.

Костный мозг, печень и тонкий кишечник являются тремя основными органами обмена железа, каждый из которых обладает системой тканевых рецепторов, специфичных для трансферрина. Ретикулоциты костного мозга, так же как и клетки эпителия слизистой оболочки кишечника, имеют повышенную способность захватывать железо из насыщенных (дижелезистых) форм трансферрина. Таким образом, ненасыщенный трансферрин лучше связывает, а насыщенный - лучше отдает железо. Механизмы регуляции активности рецепторных полей тканей, играющих определенную роль в абсорбции железа, равно как и взаимоотношения различно насыщенных форм трансферрина до настоящего времени не раскрыты.

Основным источником плазменного железа является п о с т у п л е н и я его из ретикулоэндотелиальной системы внутренних органов (печени, селезенки, костного мозга), где происходит разрушение гемоглобина эритроцитов. Небольшое количество железа поступает в плазму из запасного фонда и при абсорбции его из пищи в желудочно-кишечном тракте. Преобладающим циклом в интермедиарном обмене железа в организме человека является образование и разрушение гемоглобина эритроцитов, что составляет 25 мг железа в сутки.

Ферритин сыворотки крови, вероятно, осуществляет

транспортировку железа от ретикулоэндотелиальных к п а р е н х и м а т о з н ы м клеткам печени, однако его роль в общем обмене железа в организме человека представляется минимальной.

Обмен железа между транспортным и тканевым его фондами изучен недостаточно. Это объясняется прежде всего тем, что механизмы, пути и количественные аспекты движения железа из тканей, исключая эритропоэтические, в плазму крови и наоборот изучены мало. Расчетные данные однако, свидетельствуют о том, что величина плазменно- тканевого обмена железа приблизительно составляет 6 мг в сутки.

Общая картина обмена железа в организме человека представлена на схеме.

Э Т И О Л О Г И Я ДЕФИЦИТА ЖЕЛЕЗА

В общем виде дефицит железа развивается при нарушении баланса между поступлением и потерями железа из организма. Его гомеостаз в организме поддерживается главным образом за счет механизма абсорбции в желудочно-кишечном тракте, так как выделение железа лимитировано. Многочисленными исследованиями показано компенсаторное повышение абсорбции меченого железа при обеднении им организма, поэтому уместно говорить только о неадекватном потребностям организма усвоении

железа в том случае.

Общее содержание железа в пище и его усвоение, зависящее преимущественно от соотношения продуктов животного и растительного происхождения, веществ, усиливающих или тормозящих абсорбцию, определяет его поступление в организм. Потребности в железе определяются его эндогенными затратами в связи с беременностью, ростом, и расходованием железа с кровопотерями различного происхождения, а также с отшелушивающимися клетками кожи и десквамацией кишечного эпителия.

Итак, основными причинами дефицита железа могут быть:

 разнообразные кровопотери;  недостаточное поступление и

усвоение железа из пищи;  повышенные его затраты при

интенсивном росте, беременности и занятиями физической культурой.

Нередко сочетание перечисленных факторов приводит к развитию этого состояния. Определенную, но не основную роль в происхождении обеднения организма железом могут играть нарушения пищеварения в связи с заболеваниями желудка и кишечника. Некоторые и н ф е к ц и о н н о - в о с п а л и т е л ь н ы е заболевания могут привести к перераспределению железа в организме и тем самым вызвать сидеропению. Однако истинного дефицита железа в этих случаях не наблюдается. То же самое можно

сказать и об опухолях различных организмов и систем.

Категория В о з р а с т, годы

Вес, кг.

Рост, см.

Fe, мг.

Новорожденные 0.0-0.5 6 60 10 0.5-1.0 9 71 15

Дети 1-3 13 90 15 4-6 20 112 10 7-10 28 132 10

Мужчины 11-14 45 157 18 15-18 66 176 18 19-22 70 177 10 23-50 70 178 10 51+ 70 178 10

Женщины 11-14 46 157 18 15-18 55 163 18 19-22 55 163 18 23-50 55 163 18 51+ 55 163 10

Беременные 30-60 Кормящие матери 30-60

Р О Л Ь ПИТАНИЯ

Общая масса железа у взрослого мужчины составляет около 4,5 г, у женщины около 3-4 г. Основная масса (около 75%) железа, составляющая 2,25-3 г, сосредоточена в гемоглобине.

Вне гемоглобина в эритроцитах содержится ничтожное, не учитываемое количество железа, входящее в состав клеточных энзимов (цитохромы, каталаза, оксидаза). Кроме того, при некоторых состояниях,

в частности, после спленэктомии, в некоторых эритроцитах, так называемых сидероцитах, обнаруживаются гранулы т р е х в а л е н т н о г о железа (Fe (III)), дающего при окраске по Перльсу положительную реакцию на берлинскую лазурь, что указывает на близость к г е м о с и д е р и н у .

При нормальном содержании гемоглобина, составляемом 15г%, в 100 мл крови содержится 53,4 мг железа. Вся масса крови содержит около 3 г железа. Остальную часть железа составляет железо миоглобина (мышечного гемоглобина) от 300 до 600 мг и железо дыхательных ферментов - всего около 1 г. Железо, депонированное в органах, главным образом в печени, составляет около 0,5 г .

Суточная потребность взрослого человека в железе определяется масштабами физиологических процессов кроветворения и к р о в е р а з р у ш е н и я .

Распространенность дефицита железа свидетельствует о том, что количества железа, абсорбированного из пищи, часто недостаточно для покрытия потребности в нем практически здорового населения. О д н а к о довольно трудно установить истинную роль диет в различных районах земного шара в происхождении этой п а т о л о г и и .

Железодефицитные состояния

комментарии (0)
Здесь пока нет комментариев
Ваш комментарий может быть первым
Это только предварительный просмотр
3 страница на 34 страницах
Скачать документ