Основы подготовки нефти к переработке  - конспект - Химия - Часть 1, Рефераты из Химия
zaycev_ia
zaycev_ia21 июня 2013 г.

Основы подготовки нефти к переработке - конспект - Химия - Часть 1, Рефераты из Химия

PDF (468 KB)
25 страница
517Количество просмотров
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Основы подготовки нефти к переработке Дегазация нефти Стабилизация нефти Нефтяные эмульсии Способы разрушения нефтяных эмульсий Обезвоживание нефти Обессоли...
20баллов
Количество баллов, необходимое для скачивания
этого документа
Скачать документ
Предварительный просмотр3 страница / 25
Это только предварительный просмотр
3 страница на 25 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 25 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 25 страницах
Скачать документ
Это только предварительный просмотр
3 страница на 25 страницах
Скачать документ

2

Содержание

Введение 3 1. Основы подготовки нефти к переработке 4

1.1. Дегазация нефти 4 1.2. Стабилизация нефти 5 1.3. Нефтяные эмульсии 6 1.4. Способы разрушения нефтяных эмульсий 9 1.5. Обезвоживание нефти 10 1.6. Обессоливание нефтей 10 1.7. Основные виду электрообессоливающих установок 11

2. Характеристика исходного сырья 13 3. Технологическая схема первичной подготовки нефти 17

3.1. Описание технологического процесса установки подготовки нефти (УПН) 17

3.1.1. Описание технологической схемы 17 3.1.2. Резервная схема работы 24 3.1.3. Схема приготовления и закачки реагента-деэмульгатора 25 3.1.4. Освобождение аппаратов от продуктов и установка заглушек 25

3.2. Регламент работы установки подготовки нефти 26 3.2.1. Общая характеристика цеха УПН 26 3.2.2. Нормы технологического режима работы УПН 27 3.2.3. Контроль технологического процесса. Система сигнализации и блокировки УПН 30 3.2.4. Порядок пуска и остановки УПН 33

3.3.Основные правила безопасного ведения технологического процесса 36 3.4. Возможные неполадки технологического процесса. 38 3.5. Аварийная остановка УПН 40 3.6. Мероприятия по охране окружающей среды 40

3.6.1. Выбросы в атмосферу дымовых газов, потери от испарения факельных выбросов 41

4. Расчет электродегидратора 42 4.1. Условия расчета 42 4.2. Расчет электродегидратора 42

5. Продукция установки УПН 45 6. Материальный и тепловой балансы 45 Заключение 48 Список сокращений 49 Список использованных источников 49

3

Введение

Один чудак из партии геологов Сказал мне, вылив грязь из сапога: "Послал же бог на голову нам олухов! Откуда нефть – когда кругом тайга? И деньга вам отпущены - на тыщи те Построить детский сад на берегу: Вы ничего в Тюмени не отыщите – В болото вы вгоняете деньгу"

В. Высоцкий

Нефть – единственное жидкое ископаемое, добываемое с доисторических времен. И пожалуй, ни одно из природных веществ не вызвало столько споров: по сей день ученые обсуждают, можно ли назвать ее минералом или относить к горным породам, высказывают разные предположения о том, сколько нефти в недрах планеты, до какой глубины она встречается, что происходит с ней по истечении времени, как она образовалось – химизм этих процессов.

Сургутский нефтеносный район представляет из себя крупное подземное поднятие, а также своды и впадины, окружающие его. Около 30 000 квадратных километров приходится на Сургутский свод.

Удивительна история открытия перспективного в Сургутском районе Федоровского месторождения. Северо-восточнее Сургута, в долине Черной Речки. В 1963 году на этой площади была открыта нефть в песчаном пласте. По буре нию четырех скважин залежь сочли неинтересной, поэтому дальнейшую разведку признали нецелесо образной, к тому же были другие объекты для по- исков.

Вернулись к месторождению только в 1971 году. Сейсморазведчики провели дополнительные иссле дования и показали, что Северо-Сургутская пло- щадь лишь часть, точнее, небольшая часть круп ного подземного поднятия. Первая же скважина дала фонтан нефти, бурение других доказало су- ществование нового месторождения, которое ох ватывает Северо-Сургутскую, Федоровскую, Севе ро-Федоровскую, Моховую и Восточно-Моховую подземные структуры. В нем девять пластов с нефтью, а в двух верхних имеется и газ. В дальнейшем были открыты Комсомольское, Быстринское и другие месторождения, но Федоровское оказалось самым крупным из всех.

В 70-е годы месторождения стали разрабатываться и стали появляться промышленные объекты: дожимно-напорные станции, цеха добычи нефти и газа, цеха предварительной подготовки нефти. Так был построен и цех первичной подготовки нефти (ЦППН) и на Быстринском нефтегазодобывающем управлении (НГДУ). Этот ЦППН на сегодняшний день обслуживает шесть месторождений: комарьинское, солкинское, западно-солкинское, быстринское, вачемское, карьяунское.

Быстринскео НГДУ на сегодняшний день является одной из многих частью АО "Сургутнефтегаз". Нефть, добываемая на этом предприятии, нашла свое применение в народном хозяйстве. В основном она используется как сырье на нефтехимических предприятиях Ленинградской области. И в последние годы нефть стали экспортировать за границу.

3

1. Основы подготовки нефти к переработке

1.1. Дегазация нефти

Нефть, добываемая из земных недр, как правило, содержит газ, называемый попутным. На каждую тонну добытой нефти приходится 50-100 м3 попутного газа. Перед транспортировкой и подачей нефти на переработку газ должен быть отделен от нефти. Удаление газа из нефти - дегазация прово дится с помощью сепарации и стабилизации.

В условиях нефтяного пласта при высоком давлении газы рас творены в нефти. При подъеме нефти на земную поверхность дав ление падает и растворенный газ выделяется. Важно в этот момент уловить его. Существует несколько схем отделения газа от нефти на про мысле, различающихся условиями перемещения нефти и газа. Схемы первой группы характеризуются тем, что газ отделяют от нефти на кратчайшем расстоянии от скважины. После отделения газа к центральным пунктам сбора перемещается только нефть. Пример подобной схемы отделения газа от нефти приводится на рис.1а.

Газонефтяная смесь из скважины поступает, в вертикальную емкость С-1, оборудованную устройствами для предотвращения уноса нефти с газом. Эта емкость носит название трапа. Из трапа С-1 газ поступает в газосборный коллектор, а нефть - в мерник Е-1. По газосборному коллектору попутный газ передается для дальнейшей обработки на газобензиновые заводы. К коллектору подключается до ста и более скважин одного или нескольких близлежащих нефтяных месторождений. Поскольку давление, при котором происходит разделение в трапе, невысокое (1-2 ат), для подачи газа на газобензиновые заводы его сжимают компрессо рами ЛК-1.

Нефть из мерника Е-1 самотеком или насосами подается на нефтесборный пункт, где подвергается обезвоживанию.

Описанная схема отличается простотой, но не обеспечивает полноты улавливания попутного газа. После одноступенчатой сепа рации в нефти остается до 40-50% попутного газа. Этот газ, попадая вместе с нефтью в мерники Е-1 и резервуары нефтесборных пунктов, в значительной степени улетучивается в атмо сферу. Более эффективны системы многоступенчатой сепарации (рис. 1б).

Рис. 1 Схемы отделения газа от нефти на нефтепромысле с одно ступенчатой (а) и многоступенчатой сепарацией (б):

I-газ на газобензиновый завод; II-нефть.

3

На устье нефтяной скважины поддерживается повышенное давление. В непосредственной близости от скважины размещается газоотделитель первой ступени сепарации С-1, давление в котором равно 6-7 ат. Этого давления достаточно, чтобы без дополнитель ного сжатия подать газ на газобензиновый завод. Из газоотделителя первой ступени нефть вместе с оставшимся в ней растворенным газом самотеком перемещается на центральный сборный пункт. На этом пункте собираются потоки от большого числа скважин. В результате снижения давления на центральном сборном пункте вновь происходит выделение газа в сепараторе С-2. Этот газ подается на газобензиновый завод компрессорами. Преимущества многоступенчатой схемы сепарации:

 более полное отделение газа от нефти;  сокращение уноса капель нефти с газом;  уменьшение расхода электроэнергии на сжатие газа.

1.2. Стабилизация нефти

Даже после многоступенчатой промысло вой сепарации в нефти остается весьма значительное количество углеводородов С1-С4. Значительная часть этих углеводородов может быть потеряна при перекачках из резервуара в резервуар, при хранении и транспортировке нефти. Вместе с газами теряются ценные легкие бензиновые фракции.

Чтобы ликвидировать потери газов и легких бензиновых фрак ций, предотвратить загрязнение воздуха, уловить ценные газо образные компоненты, необходимо максимально извлечь углево дороды С1-С4 из нефти перед тем, как отправить ее на нефтеперерабатывающие заводы. Эта задача решается на уста- новках стабилизации нефти, расположенных обычно в непосред ственной близости от места ее добычи. Методы стабилизации нефти могут быть различными. Для большинства нефтей стабилизация производится на установках с применением ректификации.

Схема типовой стабилизационной установки приводится на рис. 2. Нефть, поступающая с промысловых установок сепарации, проходит через теплообменники Т-1, где подогревается уже стабилизированной нефтью, и паро- вые подогреватели Т-2. Подо гретая нефть поступает в рек- тификационную колонну-ста- билизатор К.-1. Уходящие с верха стабилизатора легкие уг леводороды конденсируются в конденсаторе холодильнике ХК-1 и поступают в емкость Е-1. С верха стабилизатора уходят углеводороды от С1 до С5 включительно. При охлаж дении

оборотной промышлен ной водой в конденсаторе-хо лодильнике конденсируется не весь продукт, уходящий с вер ха колонны. Поэтому в емко сти Е-1 происходит разделение смеси, поступившей из кон денсатора, на газ и жид кость.

Рис. 2 Схема установки стабилизации нефти:

I-нестабильная нефть; II - стабильная нефть; III - несконденсировавщийся газ; IV -

головка стабилизации (сжиженный газ).

3

Газ из Е-1 направляется в топливную сеть. Жидкий продукт - газовый конденсат частично возвращается в колонну К-1 в качестве орошения, а балансовое количество выводится со стабилизационной установки и передается на центральные газофракционирующие установки (ЦГФУ). Эти установки предназначаются для разделения газового конденсата нескольких стабилизационных установок на индивидуальные углеводороды. С низа стабилизатора уходит стабильная нефть, которая отдает свое тепло поступающему сырью в теплообменнике Т-1 и доохлаждается в холодильнике. Необходимое для ректификации тепло под водится в нижнюю часть стабилизационной колонны через трубча тую печь. Содержание газа (углеводородов С1 - С4) в стабильной нефти составляет 0,8-1,5%.

1.3. Нефтяные эмульсии

При добыче нефти ее почти всегда сопровождает пластовая (буровая) вода. В буровых водах растворены различные соли, чаще всего хлориды и бикарбонаты натрия, кальция, магния, реже карбонаты и сульфаты. Содержание солей в этих водах колеб лется в широких пределах, от незначительного до 30%.

Наличие в нефти, поступающей на переработку, воды и солей вредно сказывается на работе нефтеперерабатывающего завода. При большом содержании воды повышается давление в аппара туре установок перегонки нефти, снижается их производительность, расходуется излишнее тепло на подогрев и испарение воды.

Еще более отрицательным действием обладают хлориды. Они откладываются в трубах теплообменников и печей, что приводит к необходимости частой очистки труб, снижает коэффициент теплопередачи. Хлориды, в особенности кальция и магния, гидролизуются с образованием соляной кислоты даже при низких тем пературах. Под действием соляной кислоты происходит разруше ние (коррозия) металла аппаратуры технологических установок. Особенно быстро разъедается под действием гидролизовавшихся хлористых солей конденсационно-холодильная аппаратура пере гонных установок. Наконец, соли, накапливаясь в остаточных нефтепродуктах - мазуте и гудроне, ухудшают их качество. Следовательно, перед подачей нефти на переработку ее необ ходимо отделить от воды и солей.

Воду и соли удаляют непосредственно после извлечения нефти из земных недр (на промыслах) и на нефтеперерабатывающих за водах. Существует два типа технологических процессов удаления воды и солей - обезвоживание и обессоливание. В основе обоих процессов лежит разрушение нефтяных эмульсий. Однако при обезвоживании разрушаются природные эмульсии, те, которые образовались в результате интенсивного перемешивания нефти с буровой водой. Обезвоживание проводится на промыслах и явля ется наряду с дегазацией первым этапом подготовки нефти к транспортировке и переработке.

При обессоливании обезвоженную нефть смешивают с пресной водой, создавая искусственную эмульсию, которая затем разру шается. Обессоливание нефти проводится на промыслах и нефте перерабатывающих заводах.

Нефть и вода взаимно плохо растворимы. Поэтому отделение основной массы воды от нефти простым от стаиванием не представляет большого труда, если при добыче не образовалась водно-нефтяная эмульсия. Но чаще всего такая эмульсия образуется. Перерабатывать обводненную эмульгированную нефть

3

нельзя. Даже если эмульсия не образовалась, то не значительное количество воды все же остается в нефти в раство ренном или во взвешенном состоянии. А вместе с водой в нефть попадают и минеральные соли, которые вызывают коррозию нефте перегонной аппаратуры.

Эмульсией называется такая система двух взаимнонерастворимых или не вполне растворимых жидкостей, в которых одна содер жится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул), исчисляемых трил лионами на литр эмульсии. Жидкость, в которой распределены глобулы, называется дисперсной средой, а вторая жидкость, рас- пределенная в дисперсной среде, - дисперсной фазой.

При движении нефти по скважинам она весьма интенсивно перемешивается с пластовой водой. В различных стадиях переработки, например при защелачивании, нефть и ее погоны также тесно соприкасаются с водой. В этих случаях часто и образуются стойкие нефтяные эмульсии. Расслаивание нефтяных эмульсий в естественных условиях иногда наступает по истечении весьма длительного времени. (Описаны эмульсии, не разрушавшиеся годами). Однако чаще всего про исходит частичное расслаивание, после которого между слоями воды и нефти остается промежуточный эмульсионный слой.

Стойкие эмульсии по внешнему виду представляют собой гус тые мазеобразйые массы от светло-желтого до темного цвета. Эмульсии, образовавшиеся после водно-щелочной промывки неф тепродукта, иногда имеют почти сметанообразный вид. Вязкость эмульсий значительно выше вязкости воды и нефти.

Нефтяные эмульсии чаще всего представляют собой эмульсии типа вода в нефти, в которых дисперсной средой является нефть, а дисперсной фазой-вода. Такая эмульсия гидрофобна: в воде она всплывает, а в бензине или других растворителях равномерно распределяется.

Реже встречаются эмульсии типа нефть в воде, в которых дис персной средой служит вода. Такая эмульсия гидрофильна: вводе она равномерно распределяется, а в бензине тонет.

Образование эмульсий связано с поверхностными явлениями. Поверхностный слой жидкости на границе с воздухом или другой жидкостью, как известно, характеризуется определенным поверх ностным натяжением, т. е. силой, с которой жидкость сопротив ляется увеличению своей поверхности. Поверхностное натяжение нефти и нефтепродуктов колеблется в пределах 0,02-0,05 н/м (20-50 дн/см). Опыты показывают, что добавление некоторых веществ к чистым нефтяным погонам вызывает понижение их по верхностного натяжения на границе с водой. Это явление носит общий характер.

Иногда вещества при растворении даже в очень малых кон центрациях существенно понижают поверхностное натяжение рас творителя. Вещества, способные понижать поверхностное натя жение, называются поверхностно-активными. Характерная осо бенность этих веществ в том, что в их состав входит, как правило, углеводородный радикал (гидрофобная часть молекулы) и какая- либо полярная группа (гидрофильная часть молекулы). Понижение поверхностного натяжения двухфазной жидкой системы на границе раздела фаз в результате воздействия полярных веществ объяс няется тем, что добавленное вещество распределяется неравномер но в том компоненте системы, который является по отношению к нему растворителем. Концентрация его у поверхности раздела фаз будет более высокой, чем во всем объеме растворителя. Иными словами, добавленное полярное вещество будет

3

адсорбироваться поверхностным слоем растворителя и тем самым понижать его по верхностную энергию. В результате на границе раздела фаз обра зуется адсорбированный слой, который можно рассматривать как пленку молекул поверхностно-активяого вещества на поверхности растворителя.

Всякая эмульсия, в том числе и нефтяная, может образоваться только тогда, когда механическое воздействие на смесь двух взаимно нерастворимых жидкостей будет вызывать диспергирование, т. е. дробление жидкости на очень мелкие частицы. Ясно, что чем меньше поверхностное натяжение жидкостей, тем легче будет идти образование капель, т. е. увеличение общей поверхности жид кости, так как оно будет требовать меньшей затраты работы. Однако после перемешивания двух чистых, нерастворимых друг в друге жидкостей стойкость полученной эмульсии обычно неве лика. Более тяжелая жидкость осядет на дно, капельки дисперсной фазы, сталкиваясь друг с другом, объединятся в более крупные. Оба эти процесса и приведут к расслаиванию эмульсии на два слоя. Только при очень высокой степени дисперсности, когда диа метр капель дисперсной фазы измеряется десятыми долями мик рона (10-7 м) и межмолекулярные силы уравнивают гравита ционные силы, разрушение эмульсии становится затруднительным.

Иначе обстоит дело, если смесь двух нерастворимых жидкостей находится в условиях, способствующих диспергированию, и в ней присутствует какое-либо поверхностно-активное вещество, пони жающее поверхностное натяжение за счет образования адсорб ционного слоя. Во-первых, это способствует дроблению капель, а во-вторых (что имеет решающее значение), капли будут окружены не молекулами дисперсной среды, а прочной пленкой адсообционного слоя. В этом случае образуются стойкие, трудно расслаиваю- щиеся эмульсии, так как капли дисперсной фазы, защищенные своеобразным панцирем - адсорбционной пленкой, не могут сли ваться друг с другом. В некоторых случаях толщина адсорб ционной пленки такова, что ее можно рассмотреть в микро скоп.

Вещества, способствующие образованию и стабилизации эмуль сий, называются эмульгаторами. Ими являются такие полярные вещества нефти, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные не органические примеси. Например, по данным Левченко, в состав эмульгаторов арланской и ромашкинской нефти, помимо смол и асфальтенов входит до 50% неорганических веществ. Исследова ния последних лет показали, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды.

Микрокристаллы парафинов, церезинов и смешанных пара- фина-нафтеновых углеводородов, адсорбируясь на поверхности эмульсионных глобул, образуют своеобразную броню.

Характер эмульсии зависит от свойств эмульгатора. В сырой нефти обыкновенно образуется гидрофобная эмульсия типа вода в нефти, так как эмульгаторами в этом случае являются смолы. Они хорошо растворяются в нефти и не растворяются в воде. Смолы, адсорбируясь на поверхности раздела нефть-вода, по падают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды.

Алюминиевые, кальциевые, магниевые и железные мыла неф тяных кислот также хорошо растворимы в нефти и ее дистилля тах, поэтому они также способствуют образованию гидрофобных эмульсий. Наоборот, натриевые мыла нефтяных кислот (продукт реакции при щелочной очистке) хорошо растворимы в воде и хуже в углеводородах. Поэтому они адсорбируются в поверхностном

3

слое со стороны водной фазы, обволакивают пленкой капельки нефти и таким образом способствуют образованию гидрофильной эмульсии типа нефть в воде. При наличии эмульгаторов обоих типов возможно обращение эмульсий, т. е. переход их из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий.

1.4. Способы разрушения нефтяных эмульсий

Механизм разрушения нефтяных эмульсий состоит из нескольких стадий:

1. Столкно вение глобул (частиц) воды; 2. Слияние глобул в более крупные капли; 3. Выпадение капель. Для того чтобы разрушить эмульсии, в промышленной прак тике

применяются следующие процессы:  механические - филь трование, обработка ультразвуком;  термические - подогрев и отстаивание нефти от воды, промывка

горячей водой;  электри ческие - обработка в электрическом поле переменного и

постоян ного тока;  химические - обработка различными деэмульгаторами. Перемешивание и воздействие электрического поля создают

благоприятные условия для увеличения вероятности столкновения глобул воды, тепло способствует увеличению разности плотностей воды и нефти, снижению вязкости нефти, что облегчает быстрый и полный отстой капель воды. Действием деэмульгаторов - специальных поверхностно-активных веществ - ослабляется струк турно-механическая прочность слоев, обволакивающих капли воды. В качестве деэмульгаторов применяются различные поверхностно- активные вещества. Механизм действия поверхностно-активных веществ на эмульсии весьма сложен и мало изучен.

По характеру поведения в водных растворах деэмульгаторы делятся на ионоактивные и неионогенные. Первые в растворах диссоциируют на катионы и анионы, вторые ионов не образуют. Исследования, проведенные в СССР и за рубежом, показали, что наилучшим деэмульгирующим действием обладают неноногенные вещества. Расход неионогенных деэмульгаторов в несколько де- сятков раз ниже, а эксплуатационные затраты на обессоливание 1 т нефти в пять раз меньше, чем при применении ионогенных веществ.

До последнего времени для разрушения нефтяных эмульсий применялся анионоактнвный деэмульгатор - нейтрализованный черный контакт (НЧК). Этот деэмульгатор применяется на неко торых установках обессоливания до сих пор.

В настоящее время все шире используются различные неионогенные деэмульгаторы, из числа которых наиболее известны ОЖК и ОП-10. Деэмульгатор ОЖК представляет собой оксиэтилированные жирные кислоты, а ОП-10 оксиэтилированные алкилфенолы. Наиболее распространены термохимические и электрические способы разрушения эмульсий. Под влиянием электрического поля высокого напряжения, заряженные капельки воды перемещаются к электродам. Поскольку частота поля в межэлектродном про странстве меняется, происходит изменение направления движения капель воды, они сталкиваются друг с другом и сливаются.

3

1.5. Обезвоживание нефти

Наиболее простой способ удаления воды из нефти на промыслах - термохимическое обезвоживание при атмосферном давлении. К подогретой до 30-50°С нефти добав ляется деэмульгатор, а затем нефть поступает в резервуар для отстаивания. При такой обработке нефти возможны большие по тери легких нефтепродуктов во время отстаивания в

негерметичных резервуарах. Эти недостатки устраняются при термохимическом отстаивании под давлением (рис. 3). Сырую нефть забирают из Е-1 насосом Н-1, смешивают с деэмульгатором, подаваемым из Е-2, прокачи- вают через теплообменник Т-1 и паровой подогреватель Т-2 в термоотстойник Е-З. В термоотстойнике под давлением 15 ат нефть находится в течение 1-3 ч. Обезвоженная нефть через теплообмен ник Т-1 направляется в резервуар Е-4. В резервуаре нефть допол нительно отделяется от воды. Отстоявшаяся вода сбрасывается в нефтеловушку Е-5, а затем закачивается в скважину А-1. Часть сточных вод, удаленных из термостойника, возвращается на прием сырьевого насоса, с целью повторного использования содержащегася в сточной воде деэмульгатора. Нефть из ловушки вновь по дается на обезвоживание.

1.6. Обессоливание нефтей

При глубоком обезвоживании некоторых нефтей, в пластовой воде которых содержится мало солей, про исходит почти полное их удаление. Однако большинство нефтей нуждается в дополнительном обессоливании.

В некоторых случаях для обессоливания используется термо химический метод, но чаще применяется способ, сочетающий термо химическое отстаивание с обработкой эмульсии в электрическом поле. Установки последнего типа носят название электрообессоливающих (ЭЛОУ).

Рис. 3 Схема установки термохимического обезвоживания нефти:

I-сырая нефть; II-обезвоженная нефть; III-вода

3

Технологическая схема у с т а н о в к и электрообессоливания нефти приводится на рис. 4. Нефть, в которую введены про мывная вода, деэмульгатор и щелочь, насосом Н-1 прокачивается через теплообменник 7-1 и пароподогреватель Т-2 в электродегидратор первой ступени Э-1. Здесь удаляется основная масса воды и солей (содержание их снижается в 8-10 раз.) На некоторых установках ЭЛОУ перед Э-1 находится термохимическая

ступень. Из Э-1 нефть поступает в электродегидратор второй ступени Э-2 для повторной обработки. Перед Э-2 в нефть вновь подается вода. Общий расход воды на обессоливание составляет 10% от обраба тываемой нефти. На некоторых установках свежая вода подается только на вторую ступень обессоливания, а перед первой ступенью с нефтью смешиваются промывные воды второй ступени. Так удается снизить расход воды на обессоливание вдвое.

Обессоленная нефть из Э-2 проходит через теплообменник Т-1, холодильник и подается в резервуары обессоленной нефти. Вода, отделенная в электродегидраторах, направляется в нефтеотделитель Е-1 для дополнительного отстоя. Уловленная нефть возвращается на прием сырьевого насоса, а вода сбрасывается в промышленную канализацию и передается на очистку.

1.7. Основные виду электрообессоливающих установок

Глав ным аппаратом установки является электродегидратор - емкость, снабженная электродами, к которым подводится переменный ток высокого напряжения. В эксплуатации на промысловых и завод ских установках ЭЛОУ находятся электродегидраторы различных конструкций: вертикальные, шаровые и горизонтальные.

Вертикальный электродегидратор (рис. 5) представляет собой цилиндрический сосуд диаметром 3 м, высотой 5 м и объемом 30 м3. Внутри находятся электроды - металлические пластины, подвешенные на фарфоровых изоляторах. Ток подается к электро дам от двух повышающих трансформаторов мощностью по 5 ква (киловольтампер) каждый. Напряжение между электродами от 15 до 33 кв.

Сырье вводится в электродегидратор через вертикальную, вмон- тированную по оси аппарата трубу, которая на половине высоты дегидратора заканчивается распределительной головкой-Головка устроена так, что через ее узкую кольцевую щель эмульсия нефти и воды вводится в виде тонкой веерообразной горизонтальной струи. Обработанная нефть выводится в центре верхнего днища электродегидратора, а отстоявшаяся вода-через нижнее днище.

Рис. 4 Схема установки электрообессоливания нефти:

I-сырая нефть; II-деэмульгатор; III-щелочь; IV - свежая вода; V- обессоленная нефть; VI-вода в

3

Недостатком вертикальных электродегидраторов, приведшим к их вытеснению более современными конструкциями, является низкая производительность, недостаточно высокая температура обессоливания. Из-за низкой производительности на установках ЭЛОУ приходилось соединять параллельно 6-12 аппаратов. На мощных электрообессоливающих установках, построенных в 1955-1970 гг., применяются шаровые электродегидраторы емко стью 600 м3 и диаметром 10,5 м. Производительность такого дегидратора (рис. 6) равна 300-500 м3/ч. Принцип его действия тот же, что и вертикального аппарата, но вместо одного стояка с рас пределительной головкой для ввода сырья и одной пары электро дов в шаровом электродегидраторе их по три.

Шаровые дегидраторы имеют в 10-15 раз большую произво дительность, чем вертикальные, но они громоздки и трудоемки в изготовлении. Кроме того, они не могут эксплуатироваться при высоком давлении. Повышение расчетного давления электродегидратора привело бы к большому перерасходу металла на аппарат. За последние годы в нашей стране и за ее пределами получили распространение горизонтальные электродегидраторы. Конструк ция такого аппарата, рассчитанного на давление до 18аг и тем- пературу процесса 140-160°С, приведена на рис. 7. Горизонталь ные электродегидраторы имеют диаметр 3-3,4 н и объем 80 и 160 м3. Повышение расчетного давления и температуры играет большую роль, так как позволяет проводить глубокое обезвожи- вание и обессоливание трудно обессоливаемых нефтей.

Электроды в горизонтальном электродегидраторе расположены почти посредине аппарата. Они подвешены горизонтально друг над другом. Расстояние между ними составляет 25-40 см.

Ввод сырья в горизонтальный электродегидратор осуществля ется через-расположенный вдоль аппарата горизонтальный маточ ник. Поступая в аппарат, нефть попадает в слой отстоявшейся воды, а затем - в зону под электродами, в межэлектродное про странство, и, наконец, в зону над электродами. В верхней части дегидратора располагаются выкидные коллекторы обработанной нефти. Достоинством этой конструкции является большой путь движения нефти и время ее пребывания в аппарате, так как ввод

Рис. 5. Вертикальный электродегидратор:

1-корпус; 2-электроды; 3,4-изоляторы; 5 - трансформаторы; 6 - манометр; 7 - сигнальные лампы; 8 - распределительная головка; 9 - измерительное стекло.

Рис. 6. Шаровой электродегидратор:

1-трансформатор; 2, 4-распределительные головки ; 3 - эле ктрод; 5 - штуцер для вывода обессоленной нефти; 6-штуцер для ввода сырой нефти; 7-штуцер для

3

сырья расположен значительно ниже, чем в других электродегидраторах. При этом улучшаются условия отстаивания воды.

Кроме того, в горизонтальном электродегидраторе крупные частицы воды выпадают из нефти еще до попадания в зону силь ного электрического поля, расположенную в межэлектродном про странстве. Поэтому в нем можно обрабатывать нефть с большим содержанием воды, не опасаясь чрезмерного увеличения силы тока между электродами.

Сравнение эффективности электродегидраторов различной кон струкции показывает несомненные преимущества горизонтальных аппаратов. Удельная производительность последних в 2,6 раза больше, чем шаровых, а удельный расход металла - на 25% меньше.

Режим обессоливания. Температура и давление про цесса обессоливания во многом зависят от конструкции аппарата. Большое значение имеют свойства обессоливаемой нефти. Многие нефти хорошо обессоливаются при 70-90°С. Однако для таких нефтей, как ромашкинская, особенно в тех случаях, когда они поступают с промыслов плохо подготовленными, приходится повы шать температуру обессоливания до ПО-160°С. Повышение тем пературы обессоливания увеличивает электрическую проводимость и силу тока, усложняет условия работы изоляторов.

Важное значение имеет равномерная подача в нефть деэмульгатора. Расход деэмульгаторов на ЭЛОУ составляет: НЧК-ог 500 до 5000 а/т, ОЖК-от 20 до 60 а/г. ОП-10 - от 35 до 50 г1т нефти. Деэмульгатор НЧК подается в нефть в чистом виде, а неионогенные деэмульгаторы - в виде 2-5%-ных водных растворов.

В нефть также подается щелочь, которая необходима для созда ния при обессоливании нейтральной или слабощелочной среды. В такой среде ускоряется процесс деэмульсации, уменьшается сила тока в электродегидраторах и коррозия аппаратуры. Расход щелочи составляет до 50 г/т нефти.

2. Характеристика исходного сырья

Добываемая из скважин эмульсия представляет собой многофазную систему, состоящую из нефти, пластовой воды и попутных нефтяных газов. Нефть представляет собой химически сложную компонентную смесь, состоящую из метановых, нафтеновых, ароматических групп углеводородов.

Рис. 7. Горизонтальный электродегидратор типа ЭГ.

Физико-химические свойства нефтей. Таблица 1.

№ п\п

Наименование показателей

Месторождения Комарьи

нское Солкин

ское Западно-Со лкинское

Быстринс кое Вачемское Карьяунское

1. Плотность, кг/м3по ГОСТ 39000-85 878 878 872 862-914 903 915 2. Вязкость кинематическая, кв2/с (сет) по ГОСТ

33-82: при 20 С при 50 С

26,28 14,71

32,37 10,09

21,22 7,27

43,6 25,6

69 20

116,68 26,55

3. Содержание в нефти, % масс. воды, ГОСТ 2477-65: солей, мг/л ГОСТ21534-76 серы по ГОСТ 1437-75 парафина по ГОСТ 11851-86 смол по ГОСТ 11858-66 асфальтенов по ГОСТ 11858-66 меркаптанов сульфида железа мех.примесей по ГОСТ 11858-66

85-90 230

1,23 19,33 4,10

0,01661 0,0205

86-90 115,14

1,4 4,4 8,3 3,35

0,0034 0,01153

85-90 58,96 0,99 3,04 3,5 3,07

0,00292 0,0227

60,0-85 3447,4 0,9-2,3 2,4-5,2 4,8-12,8 1,8-4,2

0,08

40,0-65 3950 1,3 2,4 7,6 3,0

0,2348

15,0-30 186,43

- 2,5

15,84 1,98

0,0191

4. Фракционный состав по ГОСТ 2171-82, % от начала кипения:

до 100 С до 200 С до 300 С до 350 С

90 1,0 19,0 26,7

75 2,0 23,0 36,3

87 1,4 20,0 40,0

86 4,5 12,0 47,0

86 6,0 15,0 30,0

97 0,8 5,4 17,8

5. Температура застывания, ГОСТ 20287-74 -10 -2 -4 -30,0 -30,0 - 6. Температура вспышки, ГОСТ 6356-75 38 36 28-35 24-37 37

Физико-химические свойства попутных газов. Таблица 2

№ п\п

Наименование показателей

Месторождения Комарьи

нское Солкин

ское Западно-Со лкинское

Быстринс кое Вачемское Карьяунское

1. Плотность, кг/м3 0,772 0,801 0,7601 0,772 0,720 0,6817 2. Состав газа по ГОСТ 13379-77, %:

СO2 азот, N2 метан, CH4 этан, С2Н6 пропан, C3H8 п-бутан, п-C4H10 изобутан, и-C4H10

0,2 1,5 92,0 2,5 2,3

0,32 1,8

88,09 2,54 3,55 0,88 1,62

0,28 0,83 83,52 2,84 5,31 1,50 3,13

75,5-96,8 0,56-7,2 0,31-9,38

0,52-3,92

0,2 0,22 96 1,0 0,65

1,2

0,36 0,30 98,65 0,18 0,23 0,01 0,23

3. Газовый фактор, м3/т 41,0 47,0 25,0 42,0-71,0 49,0 - 4. Теплотворная способность

газа, Q, ккал/м3 - - 8686,18 8580,24 8670,52 8022,83

Физико-химические свойства пластовых вод. Таблица 3

№ п\п

Наименование показателей

Месторождения Комарьи нское

Солкин ское

Западно-Со лкинское

Быстринс кое Вачемское Карьяунское

1. Плотность по ГОСТ 3900-85, кг/м3 1011,5 1004 1010,5 1003,8 1012 1011 2. pH пластовых вод 7,2 7,2-7,4 7,4-7,6 7,0-8,5 7,5 7,8 3. Ионный состав воды, мг/л:

60,0 12,0 36,0 - - -

254,2-360 268,4 305,0 293-2600 600 1281

9,3 3,0 3,4 - - 1,01

8801,7 6369,4 9304,2 7910,4 9300 8491

184-200 218,4 214,4 144-263,5 200 220,4

48,8-15,0 42,7 58,6 - 16 36,5

5025,5 3914,6 5825,9 5324,2 - 5663,1

4. Массовая доля железа, мг/дм3 0,98-25,0 0,27 0,55 0,65-30,0 15 4,3 5. Содержание взвешенных частиц, мг/л 50 45 53 20,0-220,0 6,1-160 - 6. Вязкость, сСт. 13,6 10,8 15,7 - - -

17

В нефти содержатся в небольших количествах смолы, асфальтены и растворенные в них в разных количествах газы: азот, сероводород, окись углерода и другие, а также пластовая вода в зависимости от обводненности нефтяной эмульсии с растворенными в ней минеральными солями. По внешнему виду нефть представляет собой маслянистую жидкость от светло-коричневого до почти черного цвета. Содержание тех или иных компонентов могут различаться даже в несколько десятков раз, поэтому нефти добываемые с разных месторождений смешиваются. И таким образом получается сырье с почти постоянными физико-химическими свойствами.

Физико-химические свойства нефтей Комарьинского, Солкинского, Западно-Солкинского, Быстринского, Вачимского, Карьяунского месторождений представлены в таб. 1. Физико-химические свойства газов и пластовых вод преведены в таб.2 и таб.3.

3. Технологическая схема первичной подготовки нефти

3.1. Описание технологического процесса установки подготовки нефти (УПН)

3.1.1. Описание технологической схемы

Технологический процесс установки подготовки нефти (УПН) осуществляется по следующей схеме (рис 8). Частично обезвоженная нефть с обводненностью до 20%, температурой 35-45 С и под давлением 0,14-0,2 МПа с установки УПСВ”Б” поступает в сепараторы С1-С3 для разгазированния нефти.

Сепараторы оборудованы приборами измерения уровня жидкости, дав- ления, предельного уровня жидкости. Давление в сепараторах контролируется прибором МС-П2. Показания давления снимаются с вторичного прибора ПВ 101.Э, установленного на щите операторной. По месту давление в сепараторах контролируется по техническому манометру. Пределы регулирования давления в сепараторах С1-С3 до Р=0,00-0,0105 МПа. Уровень жидкости в сепараторах контролируется механическими уровнемерами и уровнемерами УБ-ПВ и регулируется пневмоклапанами типа “ВЗ”,установленнымина трубопроводах по выходу нефти из каждого аппарата. Показания приборов УБ-Пв выводятся на вторичные приборы ПВ-101.Э уста новленные на щите операторной. Предельно-допустимый уровень в сепарато рах контролируется прибором СУС-И. Предупредитель ная сигнализация срабатывает: по давлению при Рmax=0,015 МПа; по уровню жидкости при Hmin=0,7 м и Hmax=1,9 м. Аварийная сигнализа ция по уровню жидкости срабатывает при Нmax=2,1 м.

Разгазированная в сепараторах С 1-3 нефть через узел переключений задвижек поступает в технологические резервуары РВС-10000 №№ 2,4. Резервуары оборудованы приборами: замера уровня жидкости,контроля пре- дельного верхнего уровня жидкости.межфазного уровня жидкости “вода-нефть”. Замер уровня жидкости в резервуарах производится по месту прибором УДУ-10. Контроль предельно-допустимого уровня жидкости в резервуарах осуществляется прибором СУС-И, сигнал от которого выведен на

17

световое табло щита операторной. Предупредительная сигнализация срабатывает при уровне жидкости Hmax=10,5 м.

33

Контроль межфазного уровня “вода-нефть” осуществляется механическими фазоискателями специальной конструкции. Пределы регулирования межфазного уровня “вода-нефть” в пределах H=2,0-3,5 м.

В резервуарах №№ 2,4 происходит дальнейшее обезвоживание нефти путем гравитационного отстоя. Отстоявшаяся в резервуарах нефть с обводненностью до 10% по трубопроводу (“нефтяной стояк”) с высоты Н=4,5 м. поступает на технологические насосы ЦНС 300х120.

Насосы ЦНС 300х120 снабжены приборами контроля давления - по входу техническим манометром и ЭКМ ВЭ16РБ по входу; температуры подшипников насоса и элктродвигателя; утечки сальников. Утечка сальников насосов контролируется прибором ДУЖЭ-200М. Сигнал от прибора выведен на световое табло щита операторной. Срабатывает сигнализация и блокировка работы насосов: по давлению при Pmin= 0,9 МПа и Pmax= 1,3 МПа; температуре подшипников Tmax=70С; предельно-допустимом уровне жидкости в стакане Hmax=0,1 м. В поток нефти на прием насосов ЦНС 300х120 через задвижки подается дозируемый расход реагента-деэмульгатора в количестве 20-35 г/тонну в зависимости от марки реагента. Поступившая на насосы ЦНС 300х120 нефть откачивается в общий коллектор перед печами - нагревателями ПТБ-10 №№ 1-4.

Нефть с установок УПС”є и УПСВ”2а” с обводненностью до15%, температурой 20-30С и под давлением до 0,8 МПа, поступает также в общий коллектор перед печами ПТБ-10. В поток нефти перед коллектором подается дозируемый расход реагента-деэмульгатора в количестве 20-35 г/т.

Поступившая в коллектор нефть с установок УПС”є,УПСВ”2а” и выкида насосов ЦНС 300х120 смешивается и равномерно распределяется по печам-нагревателям, где нагревается до температуры t=45-50С. Расход нефти через печь ПТБ-10 контролируется прибором расходомером типа “Норд-ЭЗМ” (печи ПТБ-10 №№ 1,2) и типа “Турбоквант” (печи №№ 3,4), установленным на трубопроводе выхода нефти из печи. Показания расходомера выведены на вторичный прибор КСУ2 и прибор идентичного типа, установленные в БУСе. Температура нефти на выходе из печи контролируется прибором ТСМ. Показания прибора выводятся на вторичный прибор КСМ2, установленный в БУСе и дублируется прибором КСМ2 на щите операторной. Температура дымовых газов контролируется прибором ТХА. Показания прибора выводятся на вторичный прибор КСП4, установленный в БУСе.

Давление нефти в трубопроводе на входе в печь контролируется ЭКМ ВЭ16РБ и техническим манометром. Сигнал от ЭКМ выводится в БУС. Стабильное давление газа на горелках печи поддерживается регулирующим клапаном РДБК, установленным в ГРУ печи. Для отключения газа на горелки печи, при отклонении его давления от заданных пределов, в ГРУ установлены пневматические клапаны-отсекатели, (печи № 3-4) и гидравлические клапаны-отсекатели КОГ (печи № 1-2), срабатывающие при Рmax=0,05 МПа и Рmin=0,005 МПа. Контроль пламени на горелках печи осуществляется прибором ПУИ-1. Во избежание аварийных ситуаций предусмотрена система блокировок по остановке печи по следующим параметрам:

 температуре нефти на выходе из печи, при tmax=60С;  давлению нефти в подводящем трубопроводе, при Рmin=0,2 МПа и

Рmax=0,8 МПа;

33

 расходу нефти через печь, при Qmin=300 м3/час;  температуре дымовых газов на выходе из печи, при tmax=600-650С;  давлению газа на горелки печи, при Рmin=0,005 МПа и Рmax=0,05

МПа;  давлению воздуха на горелки печи, при Ну=500 мм.вод.ст.;  давлению воздуха на приборы КИП печи при Рmin=0,1 Мпа;  контролю пламени на горелках печи. Для аварийного отключения подачи газа на печь на газопроводе

установлена электроприводная задвижка. Нагретая в печах-нагревателях ПТБ-10 №№ 1-4 до температуры 45-50С нефть поступает в электродегидраторы №№ 1-4, где происходит обезвоживание и обессоливание нефти. Электродегидраторы горизонтального типа.

Оборудованы электродегидраторы приборами: контроля электрического тока в фазах “А”, ”С” внешней цепи, межфазного напряжения внешней цепи; контроля и регулирования давления, межфазного уровня ”вода-нефть”. Электрический ток в каждой фазе контролируется отдельным амперметром, установленным на щите в операторной. Пределы контролирования тока J=0-240А. Межфазное напряжение внешней цепи контролируется вольтметрами, установленными на щите операторной. Пределы измерения напряжения U=0-500 В. Давление жидкости в электродегидраторах контролируется техническими манометрами и приборами МС-П2 показания от которых выводятся на вторичный прибор ПВ- 10.1Э, установленный на щите операторной. Регулируется давление пневматическими клапанами типа “В3”, установленными на трубопроводах выхода нефти из каждого электродегидратора. Пределы регулирования давления в электродегидраторах Р=0,3-0,8 МПа. Уровень раздела фаз “вода-нефть” контролируется механическими пробозаборными устройствами и приборами УБ-ПВ. Показания приборов выведены на вторичные приборы ПВ 10.1Э, установленные на щите операторной. Регулируется уровень раздела фаз пневмоклапанами типа “ВО”, установленными на трубопроводах выхода воды из электродегидраторов. Пределы регулирования уровня раздела фаз Н=0,5-1,3 м.

Во избежание аварийных ситуаций и безопасного ведения технологического процесса предусмотрена система блокировок по остановке электродегидратора в следующих случаях:

 при повышении электротока во внешних фазах цепи, Jmax>240А;  при коротком замыкании цепи электротока в трансформаторе;  при разгерметизации проходных изоляторов и утечке масла из узла

ввода высокого напряжения;  при выделении газа из нефти в электродегидраторе;  при повышении давления в электродегидраторе Рmax>0,8 МПа;  при открытой двери на площадке обслуживания трансформатора;  при минимальном давлении воздуха на приборы КИП, Рmin<0,1 МПа.

Аварийная сигнализация срабатывает:  при повышении электротока во внешних фазах, Jmax=240А;  по межфазному уровню при Нmax>1,3 м.;  по давлению при Рmax>0,8 МПа;  при превышению уровня масла в узлах ввода фаз “А” и “В”;

33

 при разгерметизации проходных изоляторов и утечке масла из узлов ввода фаз “А” и “В”;

 при выделении газа из нефти в электродегидраторе. При срабатывании аварийной сигнализации на щите операторной загорается световое табло с указанием параметра, по которому произошло срабатывание. Обезвоженная нефть с обводненностью до 1% и температурой t=44 - 49С из электродегидраторов ЭГ1-ЭГ4 поступает в сепараторы “горячей сепарации” С 4-6, объемом V=100 м3 каждый, для дальнейшего разгазирования нефти. Сепараторы оборудованы приборами измерения и контроля уровня жидкости в аппарате, давления, предельно-допустимого уровня жидкости. Давление в сепараторах контролируется техническими манометрами и приборами МС-П2. Показания приборов выводятся на вторичные приборы ПВ10.1Э, установленные на щите операторной. Пределы регулирования давления Р=0,0-0,005 МПа. Уровень жидкости в сепараторах контролируется механическими уровнемерами и приборами УБ-ПВ. Показания приборов УБ-ПВ выводятся на вторичные приборы ПВ 10.1Э, установленные на щите операторной. Регулируется уровень жидкости пневмоклапанами типа “ВЗ”, установленными на линиях выхода жидкости из препараторов. Пределы регулирования уровня жидкости Н=0,7-1,7 м. Предельно-допустимый (аварийный) уровень жидкости в сепараторах контролируется приборами СУС-И. Сигнал от приборов выведен на световое табло щита операторной.

Предупредительная сигнализация срабатывает по давлению при Рmax=0,005 МПа, по уровню жидкости в сепараторах при Нmin=0,7 м и Нmax=1,7 м. Аварийная сигнализация по уровню жидкости в сепараторах срабатывает при Нmax=2,0 м. Разгазированная нефть из сепараторов С4-С6 поступает в товарные резервуары РВС-10000 № 1,3 УПН и РВС-5000 №№ 1-2 УПСВ”Б”, откуда насосами ЦНС 300х360,насосной внешней откачки, откачивается на ФКСУ (ЦКПН НГДУ “Федоровскнефть”).

Газ после сепаратора С-3 УПСВ”Б” поступает в сепаратор ГС-3,где происходит улавливание капельной жидкости и конденсата. Газосепаратор оборудован приборами контроля давления, уровня жидкости. Давление в газосепараторе ГС-3 контролируется техническим манометром. Верхний и нижний уровень жидкости контролируется приборами СУС-1, сигнал от которых выведен на щит в котельную. Срабатывает предупредительная сигнализация по уровню жидкости при Нmin=0,5 и Нmax=1,0 м. Уловленный в газосепараторе конденсат и жидкость дренируется в подземную емкость ЕП-13, откуда при помощи насосного агрегата ЦА-320 откачивается в автоцистерну.

Газ из газосепаратора ГС-3 поступает в газосепаратор ГС-4 где происходит дополнительное отделение влаги от газа. Газосепаратор оборудован приборами контроля и измерения давления, уровня жидкости. Уровень жидкости в газосепараторе контролируется прибором УБ-ПВ. Показания прибора выводятся на вторичный прибор ПВ 10.1Э, установленный на щите операторной. Пределы измерения уровня Н=0,5-1,0 м. Давление в газосепараторе контролируется техническим и электроконтактным манометром ВЭ16РБ, а также прибором 13ДИ30. Показания прибора выводятся на вторичный прибор ПКР , установленный на щите операторной. Пределы поддержания давления в газосепараторе Р=0,15-0,3 МПа.

Из газосепаратора ГС-4 газ по отдельным трубопроводам поступает на печи ПТБ-10 № 1-2 и ПТБ-10 № 3-4. На трубопроводах установлены диафрагмы, для измерения количества газа подаваемого на печи. Показания диафрагм через

33

преобразователи давления 13ДД11, выведены на вторичные приборы РПВ.4, установленные на щите операторной. Уловленные в газосепараторе конденсат и жидкость дренируются в подземную емкость ЕП-8.

Газ из сепараторов С 1-6 поступает на газокомпрессорную станцию. При поподании газового конденсата и капельной жидкости в газопровод (повышении давления в газопроводе и сепараторах и падении давления в газопроводе на приеме газокомпрессорной) предусмотрен дренаж жидкости из газопровода в подземные емкости ЕП-4,12. При остановке газокомпрессорной станции газ из сепараторов С1-С6, операторами компрессорной станции, переводится на факел низкого давления (ФНД-II), где сжигается. На газопроводе перед факелом,для улавливания капельной жидкости и газового конденсата, из трубы диаметром 720 мм и длиной L=8,0 м, смонтирован “сепаратор-расширитель” С-8. Уловленная в сепараторе-расширителе С-8 жидкость дренируется в ЕП-7.

Газ из установки УПСВ”Б” по отдельному газопроводу через сепаратор-расширитель С-7,смонтированный из трубы диаметром 720 мм, длиной 8,0 м и предназначенный для улавливания конденсата и жидкости, находящихся в газе, поступает на факел высокого давления (ФВД-I), где сжигается. Уловленная в “сепараторе-расширителе” С-7 жидкость дренируется в подземную емкость ЕП6.

Подтоварная вода с электродегидраторов ЭГ 1-4 через задвижки поступает в технологические резервуары РВС-10000 №№ 2,4 УПН. При необходимости предусмотрена подача подтоварной воды с электродегидраторов ЭГ 1-4 через задвижку на прием технологических насосов ЦНС 300х120 УПН и в очистные резервуары РВС-5000 № 3-6 УПСВ”Б”. Подтоварная вода с технологических и товарных РВС-10000 УПН поступает на прием внутрипарковых насосов ЦНС 180х170 и откачивается в очистные резервуары РВС-5000 №№ 3-6 УПСВ”Б”.

Насосы ЦНС 180х170 оборудованы приборами контроля давления - по входу нефти техническим манометром и ЭКМ ВЭ16РБ по выходу; температуры подшипников насоса и электродвигателя; утечки жидкости через сальниковые уплотнения. Утечка жидкости через сальники насосов контролируется прибором ДУЖЭ-200М. Сигнал от прибора выведен на щит операторной. Срабатывает сигнализация и блокировка работы насосов: по давлению при Рmin=1,4МПа и Рmax= 1,9 МПа; температуре подшипников Тmax=70С; предельно-допустимом уровне жидкости в стакане Нmax=0,1 м.

Нефтяная “пленка” с очистных резервуаров РВС-5000 № 3-6, а также водная “подушка” с товарных резервуаров РВС-5000 № 1-2 УПСВ”Б” поступает на прием насосов ЦНС 180х170 и откачивается:

 в технологические резервуары РВС-10000 №№ 2,4;  на прием сырьевых насосов УПН ЦНС 300х120.

При необходимости раскачки одного из технологических или товарных резервуаров РВС-10000 №№ 1-4 нефть поступает на прием внутрипарковых насосов ЦНС 180х170 и откачивается:

 в работающие резервуары РВС-10000 № 2,4;  на прием сырьевых насосов ЦНС 300х120. Сброс с предохранительных клапанов СППК, сепараторов С 1-6,

газосепаратора ГС-4 через “сепаратор-расширитель” С-8 осуществляется на факел низкого давления (ФНД).

33

Сброс с предохранительных клапанов электродегидраторов ЭГ1-ЭГ2, буферных емкостей БЕ1-БЕ2 осуществляется в газосепаратор ГС-1, сброс с предохранительных клапанов электродегидраторов ЭГ3-ЭГ4, буферных емкостей БЕ3-БЕ4 осуществляется в ГС-2. Газосепараторы ГС1-ГС2 оборудованы приборами контроля верхнего предельного уровня жидкости, давления. Давление в газосепараторах ГС1-ГС2 контролируется техническим манометром. Верхние предельно-допустимые уровни жидкости в газосепараторах контролируются приборами УБ-ПВ. Сигналы от приборов выведены на световое табло щита операторной и срабатывают при высоте уровня жидкости Нmax=1,8 м. Газ с газосепараторов ГС1-ГС2 через “сепаратор-расширитель” С-7 поступает на факел высокого давления (ФВД).

Жидкость дренируется:  с газосепаратора ГС-1 в подземную емкость ЕП-4;  с газосепаратора ГС-2 в подземную емкость ЕП-12. Освобождение сепараторов С1-С3, электродегидраторов ЭГ1-ЭГ2,

буферных емкостей БЕ1-БЕ2, насосов ЦНС 300х120 №№ 1-5 для проведения ремонтных работ, а также дренаж утечек сальниковых уплотнений насосов осуществляется в подземные емкости ЕП2-ЕП3.

Освобождение сепараторов С4-С6, электродегидраторов ЭГ3-ЭГ4, буферных емкостей БЕ3-БЕ4, насосов ЦНС 300х120 №№ 6-10 для проведения ремонтных работ, а также дренаж утечек сальниковых уплотнений насосов производится в подземные емкости ЕП10-ЕП11.

Освобождение от нефти змеевиков печей ПТБ-10 осуществляется:  ПТБ-10 №№ 1-2 в подземную емкость ЕП-1;  ПТБ-10 №№ 3-4 в подземную емкость ЕП-9. Дренаж газового конденсата уловленного в газосепараторе ГС-4

осуществляется в подземную емкость ЕП-8. Освобождение от жидкости насосов ЦНС 180х170 №№ 1-3 и дренаж утечек сальниковых уплотнений насосов осуществляется в подземную емкость ЕП-5. Дренаж газового конденсата и жидкости с газосепаратора ГС-3 производится в подземную емкость ЕП-13.

Стоки промышленно-ливневой канализации поступают в подземные емкости ЕП14-ЕП15. Подземные емкости оборудованы механическими уровнемерами и приборами замера уровня жидкости:

 емкости ЕП1-ЕП5 - приборами УБ-ПВ;  емкости ЕП6-ЕП7 приборами ДУЖЭ-200М;  емкости ЕП9-НП12 приборами УБ-ПВ;  емкости ЕП14-ЕП15 приборами УБ-ПВ.

Показания приборов замера уровня жидкости подземных емкостей ЕП1-ЕП4 и ЕП9-ЕП12 выведены на вторичные приборы ПКР и РПВ, установленные на щите операторной. Сигнал от приборов замера уровня жидкости подземных емкостей ЕП5-ЕП7 и ЕП14-ЕП15 выведен на световое табло щита операторной. Пределы регулирования уровня жидкости подземных емкостей:

 ЕП1-ЕП4 - Н=0,5-1,8 м;  ЕП5-ЕП8 - Н=0,5-1,5 м;  ЕП 9-ЕП12 - Н=0,5-1,8 м;  ЕП13-ЕП15 - Н=0,5-1,7 м.

Предупредительная сигнализация по уровню жидкости в емкостях срабатывает:  ЕП1-ЕП4 при Нmin=0,5 м и Нmax=1,8 м;  ЕП5 при Нmin=0,5 м и Нmax=1,5 м;  ЕП6-ЕП7 при Нmax=1,5 м;

33

 ЕП9-ЕП12 при Нmin=0,5 м и Нmax=1,8 м;  ЕП14-ЕП15 при Нmin=0,5 м и Нmax=1,7 м.

Жидкость с подземных емкостей погружными насосами откачивается:  с емкостей ЕП1-ЕП4 в трубопровод выхода подтоварной воды с

электродегидраторов ЭГ1-ЭГ2;  с емкостей ЕП5 на прием насосов ЦНС 300х120 №№ 1-5;  с емкостей ЕП6-ЕП7 в технологические РВС-10000 № 1-4;  с емкостей ЕП9-ЕП12 в трубопровод выхода подтоварной воды с

электродегидраторов ЭГ 3-4;  с емкостей ЕП8 и ЕП13 агрегатом ЦА-320 в автоцистерну и сливается

в илонакопитель установки УПСВ”Б”. Газ с подземных емкостей поступает:

 с ЕП1-ЕП3 на факел низкого давления (ФНД);  с ЕП4 на факел высокого давления (ФВД);  с ЕП9-ЕП11 на факел низкого давления (ФНД);  с ЕП12 на факел высокого давления.

3.1.2. Резервная схема работы

Нефть с установки УПСВ”Б” поступает в буферные емкости БЕ1-БЕ2. В поток нефти перед буферными емкостями подается дозируемый расход реагента-деэмульгатора (рис. 9).

Буферные емкости оборудованы приборами измерения уровня жидкости, давления, предельного уровня жидкости.

Давление в буферных емкостях контролируется техническими манометрами и приборами МС-П2. Показания давления выведены на вторичные приборы ПВ10.1Э, установленные на щите операторной. Регулируется давление в буферных емкостях пневматическим клапаном типа “ВЗ”, установленным на общей линии выхода газа с буферных емкостей. Пределы регулирования давления в буферных емкостей Р=0,05-0,2 МПа.

Уровень жидкости в буферных емкостях контролируется механическими уровнемерами и уровнемерами УБ-ПВ и регулируется пневматическими клапанами типа “ВЗ”, установленными на трубопроводах по выходу нефти с каждой буферной емкости. Показания приборов УБ-ПВ выведены на вторичные приборы ПВ 10.1Э, установленные на щите операторной. Пределы регулирования уровня жидкости в буферных емкостях Н=0,7-1,7 м.

Предельно-допустимые уровни жидкости в емкостях контролируются приборами СУС-2И. Сигнал от приборов СУС-2И выведен на световое табло щита операторной.

Предупредительная сигнализация срабатывает:  по давлению при Рmin=0,05 МПа и Pmax=0,2 МПа;  по уровню жидкости при Нmin=0,7 м и Нmax=1,7 м. Аварийная сигнализация по уровню жидкости в буферных емкостях

срабатывает при Нmin=0,6 м и Нmax=2,0 м. С буферных емкостей нефть поступает на насосы ЦНС 300х120 № 1-5

которыми откачивается в общий коллектор перед печами ПТБ-10 № 1-4. В тот же коллектор через задвижки поступает нефть с установок УПС”є и УПСВ”2а”.

33

С коллектора нефть поступает в печи ПТБ-10 №№ 1-4, где подогревается. После печей нефть поступает в электродегидраторы ЭГ1-ЭГ4, где происходит обезвоживание и обессоливание нефти.

Нефть с электродегидраторов ЭГ1, ЭГ2 поступает в сепараторы С1-С3, а с электродегидраторов ЭГ3-ЭГ4 в сепараторы С4-С6, где происходит разгазирование нефти.

С сепараторов С1-С6 нефть поступает в товарные резервуары РВС-10000 № 1,3 УПН и РВС-5000 №1, №2 УПСВ”Б”, откуда насосами внешней откачки ЦНС 300х360 через узел учета нефти откачивается на ЦКПН НГДУ “ФН”.

3.1.3. Схема приготовления и закачки реагента-деэмульгатора

Для подачи реагента-деэмульгатора в поток нефти на установке УПН используются четыре блока БР-25-УI , оборудованные емкостями объемом V=6 м3 для хранения реагента каждый. Для хранения отечественного реагента-деэмульгатора на установке смонтированы три емкости объемом по V=50 м3. Блоки БР-25-УI оборудованы дозировочными насосами типа НД I-2,5\40 – 2 шт, НД 2,5-1000\10 – 1 шт. и шестеренчатым насосом Ш 5-25-3,6\1Б-1 – 1 шт.

Шестеренчатый насос Ш 5-25-3,6\1Б-1 предназначен для закачки рагента-деэмульгатора в емкости для хранения, приготовления смеси реагентов в самих емкостях и опорожнения емкостей.

Реагент на установку завозится:  отечественный автоцистернами и скачивается шестеренчатым

насосом Ш 5-25-3,6\1Б-1 в емкости объемом V=50 м3;  импортный в металлических бочках объемом V=216 л и закачивается

в емкости объемом V=6 м3. В нефтепроводы реагент подается в смеси с нефтью. Приготовление

смеси реагента и его подача осуществляется по следующей схеме: 1. Нефть с трубопроводов перед буферными емкостями БЕ1-БЕ4

подается на прием нефтяных дозировочных насосов НД 2,5-1000\10 реагентных блоков №1-№4. Насосами НД 2,5-1000\10 нефть подается в смесители объемом V=1 л.

2. Чистый реагент из емкости объемом V=6 м3 поступает на прием дозировочных насосов НД 1-25\40. Насосами реагент подается в смесители,где смешивается с нефтью. Расход реагента-деэмульгатора регулируется ходом плунжера насоса в зависимости от необходимой дозы.

3. С смесителей смесь реагента-деэмульгатора с нефтью подается в нефтепроводы перед буферными емкостями БЕ1-БЕ4.

3.1.4. Освобождение аппаратов от продуктов и установка заглушек

Освобождение от нефти сепараторов С1-С3, электродегидраторов ЭГ1-ЭГ2, буферных емкостей БЕ1-БЕ2, насосов ЦНС 300х120 №1-№5 для проведения ремонтных работ, а также дренаж утечек сальниковых уплотнений насосов осуществляется в подземные емкости ЕП2, ЕП3 по отдельной дренажной системе (рис. 8).

комментарии (0)
Здесь пока нет комментариев
Ваш комментарий может быть первым
Это только предварительный просмотр
3 страница на 25 страницах
Скачать документ